86 research outputs found
Pilot describing function measurements in a multiloop task
Pilot describing function measurements in multiloop control system tracking tas
Functional requirements for the man-vehicle systems research facility
The NASA Ames Research Center proposed a man-vehicle systems research facility to support flight simulation studies which are needed for identifying and correcting the sources of human error associated with current and future air carrier operations. The organization of research facility is reviewed and functional requirements and related priorities for the facility are recommended based on a review of potentially critical operational scenarios. Requirements are included for the experimenter's simulation control and data acquisition functions, as well as for the visual field, motion, sound, computation, crew station, and intercommunications subsystems. The related issues of functional fidelity and level of simulation are addressed, and specific criteria for quantitative assessment of various aspects of fidelity are offered. Recommendations for facility integration, checkout, and staffing are included
Do-it-yourself digital: the production boundary, the productivity puzzle and economic welfare
Part of the debate about the βproductivity puzzleβ concerns potential mismeasurement of GDP due to digital activities. This paper discusses some measurement issues arising from digitally-enabled substitutions in activity across the conventional production boundary. Production boundary issues are not new, as conventionally defined GDP statistics account for the monetary cost but not the time cost of consumption and production. This means changes in the way time is allocated between market and home production affect measured growth and productivity. Just as technological innovation in domestic appliances led to a substitution from home production into market consumption in the second half of the 20th century, todayβs digital innovations are driving some reverse substitution out of the market into home production. Statistical agencies do not currently collect the data needed to measure the scale of the switch, but the available evidence suggests it may be enough to make a contribution to understanding the puzzling behaviour of measured productivityEconomics Statistics Centre of Excellenc
MAVS Signaling Is Required for Preventing Persistent Chikungunya Heart Infection and Chronic Vascular Tissue Inflammation
Chikungunya virus (CHIKV) infection has been associated with severe cardiac manifestations, yet, how CHIKV infection leads to heart disease remains unknown. Here, we leveraged both mouse models and human primary cardiac cells to define the mechanisms of CHIKV heart infection. Using an immunocompetent mouse model of CHIKV infection as well as human primary cardiac cells, we demonstrate that CHIKV directly infects and actively replicates in cardiac fibroblasts. In immunocompetent mice, CHIKV is cleared from cardiac tissue without significant damage through the induction of a local type I interferon response from both infected and non-infected cardiac cells. Using mice deficient in major innate immunity signaling components, we found that signaling through the mitochondrial antiviral-signaling protein (MAVS) is required for viral clearance from the heart. In the absence of MAVS signaling, persistent infection leads to focal myocarditis and vasculitis of the large vessels attached to the base of the heart. Large vessel vasculitis was observed for up to 60 days post infection, suggesting CHIKV can lead to vascular inflammation and potential long-lasting cardiovascular complications. This study provides a model of CHIKV cardiac infection and mechanistic insight into CHIKV-induced heart disease, underscoring the importance of monitoring cardiac function in patients with CHIKV infections
Phronesis and Automated Science: The Case of Machine Learning and Biology
The applications of machine learning (ML) and deep learning to the natural sciences has fostered the idea that the automated nature of algorithmic analysis will gradually dispense human beings from scientific work. In this paper, I will show that this view is problematic, at least when ML is applied to biology. In particular, I will claim that ML is not independent of human beings and cannot form the basis of automated science. Computer scientists conceive their work as being a case of Aristotleβs poiesis perfected by techne, which can be reduced to a number of straightforward rules and technical knowledge. I will show a number of concrete cases where at each level of computational analysis, more is required to ML than just poiesis and techne, and that the work of ML practitioners in biology needs also the cultivation of something analogous to phronesis, which cannot be automated. But even if we knew how to frame phronesis into rules (which is inconsistent with its own definition), still this virtue is deeply entrenched in our biological constitution, which computers lack. Whether computers can fully perform scientific practice (which is the result of the way we are cognitively and biologically) independently of humans (and their cognitive and biological specificities) is an ill-posed question
Observing Attitudes, Intentions and Expectations (1945-1973)
Although involved in projects of influent institutions like the Cowles Commission, the NBER, and the Michigan Survey Research Center (SRC), George Katona, the "pioneer student and chief collector of consumer anticipations data" (Tobin, 1959, p. 1) is virtually absent from accounts of the topics he explored, including the study of the consumption function and the development of behavioral economics. This essay argues that such an absence is partly explained by the theoretical underpinnings of Katona's project, which were incompatible with the economic views of behavior that dominated from the mid-1940s to the mid-1970s. It compares alternative survey programs funded by the Federal Reserve during that period, and analyzes the ensuing controversy on the purposes of the observation of attitudes, intentions and expectations. It claims that understanding Katona's approach "required a real restructuring of thought - a genuine paradigm shift" (Simon, 1979, p. 12), which gives specific interest to this historical episode
Trafficking of Hepatitis C Virus Core Protein during Virus Particle Assembly
Hepatitis C virus (HCV) core protein is directed to the surface of lipid droplets (LD), a step that is essential for infectious virus production. However, the process by which core is recruited from LD into nascent virus particles is not well understood. To investigate the kinetics of core trafficking, we developed methods to image functional core protein in live, virus-producing cells. During the peak of virus assembly, core formed polarized caps on large, immotile LDs, adjacent to putative sites of assembly. In addition, LD-independent, motile puncta of core were found to traffic along microtubules. Importantly, core was recruited from LDs into these puncta, and interaction between the viral NS2 and NS3-4A proteins was essential for this recruitment process. These data reveal new aspects of core trafficking and identify a novel role for viral nonstructural proteins in virus particle assembly
A Concerted Action of Hepatitis C Virus P7 and Nonstructural Protein 2 Regulates Core Localization at the Endoplasmic Reticulum and Virus Assembly
Hepatitis C virus (HCV) assembly remains a poorly understood process. Lipid droplets (LDs) are thought to act as platforms for the assembly of viral components. The JFH1 HCV strain replicates and assembles in association with LD-associated membranes, around which viral core protein is predominantly detected. In contrast, despite its intrinsic capacity to localize to LDs when expressed individually, we found that the core protein of the high-titer Jc1 recombinant virus was hardly detected on LDs of cell culture-grown HCV (HCVcc)-infected cells, but was mainly localized at endoplasmic reticulum (ER) membranes where it colocalized with the HCV envelope glycoproteins. Furthermore, high-titer cell culture-adapted JFH1 virus, obtained after long-term culture in Huh7.5 cells, exhibited an ER-localized core in contrast to non-adapted JFH1 virus, strengthening the hypothesis that ER localization of core is required for efficient HCV assembly. Our results further indicate that p7 and NS2 are HCV strain-specific factors that govern the recruitment of core protein from LDs to ER assembly sites. Indeed, using expression constructs and HCVcc recombinant genomes, we found that p7 is sufficient to induce core localization at the ER, independently of its ion-channel activity. Importantly, the combined expression of JFH1 or Jc1 p7 and NS2 induced the same differential core subcellular localization detected in JFH1- vs. Jc1-infected cells. Finally, results obtained by expressing p7-NS2 chimeras between either virus type indicated that compatibilities between the p7 and the first NS2 trans-membrane domains is required to induce core-ER localization and assembly of extra- and intra-cellular infectious viral particles. In conclusion, we identified p7 and NS2 as key determinants governing the subcellular localization of HCV core to LDs vs. ER and required for initiation of the early steps of virus assembly
Molecular Determinants and Dynamics of Hepatitis C Virus Secretion
The current model of hepatitis C virus (HCV) production involves the assembly of virions on or near the surface of lipid droplets, envelopment at the ER in association with components of VLDL synthesis, and egress via the secretory pathway. However, the cellular requirements for and a mechanistic understanding of HCV secretion are incomplete at best. We combined an RNA interference (RNAi) analysis of host factors for infectious HCV secretion with the development of live cell imaging of HCV core trafficking to gain a detailed understanding of HCV egress. RNAi studies identified multiple components of the secretory pathway, including ER to Golgi trafficking, lipid and protein kinases that regulate budding from the trans-Golgi network (TGN), VAMP1 vesicles and adaptor proteins, and the recycling endosome. Our results support a model wherein HCV is infectious upon envelopment at the ER and exits the cell via the secretory pathway. We next constructed infectious HCV with a tetracysteine (TC) tag insertion in core (TC-core) to monitor the dynamics of HCV core trafficking in association with its cellular cofactors. In order to isolate core protein movements associated with infectious HCV secretion, only trafficking events that required the essential HCV assembly factor NS2 were quantified. TC-core traffics to the cell periphery along microtubules and this movement can be inhibited by nocodazole. Sub-populations of TC-core localize to the Golgi and co-traffic with components of the recycling endosome. Silencing of the recycling endosome component Rab11a results in the accumulation of HCV core at the Golgi. The majority of dynamic core traffics in association with apolipoprotein E (ApoE) and VAMP1 vesicles. This study identifies many new host cofactors of HCV egress, while presenting dynamic studies of HCV core trafficking in infected cells
- β¦