72 research outputs found
Abnormal expression of p27kip1 protein in levator ani muscle of aging women with pelvic floor disorders – a relationship to the cellular differentiation and degeneration
BACKGROUND: Pelvic floor disorders affect almost 50% of aging women. An important role in the pelvic floor support belongs to the levator ani muscle. The p27/kip1 (p27) protein, multifunctional cyclin-dependent kinase inhibitor, shows changing expression in differentiating skeletal muscle cells during development, and relatively high levels of p27 RNA were detected in the normal human skeletal muscles. METHODS: Biopsy samples of levator ani muscle were obtained from 22 symptomatic patients with stress urinary incontinence, pelvic organ prolapse, and overlaps (age range 38–74), and nine asymptomatic women (age 31–49). Cryostat sections were investigated for p27 protein expression and type I (slow twitch) and type II (fast twitch) fibers. RESULTS: All fibers exhibited strong plasma membrane (and nuclear) p27 protein expression. cytoplasmic p27 expression was virtually absent in asymptomatic women. In perimenopausal symptomatic patients (ages 38–55), muscle fibers showed hypertrophy and moderate cytoplasmic p27 staining accompanied by diminution of type II fibers. Older symptomatic patients (ages 57–74) showed cytoplasmic p27 overexpression accompanied by shrinking, cytoplasmic vacuolization and fragmentation of muscle cells. The plasma membrane and cytoplasmic p27 expression was not unique to the muscle cells. Under certain circumstances, it was also detected in other cell types (epithelium of ectocervix and luteal cells). CONCLUSIONS: This is the first report on the unusual (plasma membrane and cytoplasmic) expression of p27 protein in normal and abnormal human striated muscle cells in vivo. Our data indicate that pelvic floor disorders are in perimenopausal patients associated with an appearance of moderate cytoplasmic p27 expression, accompanying hypertrophy and transition of type II into type I fibers. The patients in advanced postmenopause show shrinking and fragmentation of muscle fibers associated with strong cytoplasmic p27 expression
Temperature-Induced Structural Transformations in Undoped and Eu3+-Doped Ruddlesden–Popper Phases Sr2SnO4 and Sr3Sn2O7: Relation to the Impedance and Luminescence Behaviors
We report that luminescence of Eu3+ ion incorporated into Ruddlesden–Popper phases allows monitoring phase transition in powders (instead of single crystals), in a time-efficient manner (compared to neutron diffraction), and importantly, with greater sensitivity than previous methods. Crystal structure and dielectric response of undoped and 0.5%Eu3+-doped Sr3Sn2O7 ceramics were studied as a function of temperature over the temperature range of 300–800 K. The luminescence studies of 0.5%Eu3+-doped Sr2SnO4 and Sr3Sn2O7 samples were performed in the temperature range of 80–500 K. These results were compared with the respective dependences for the undoped compounds. The structural transformations in 0.5%Eu3+-doped Sr3Sn2O7 were found at 390 and 740 K. The former is associated with the isostructural atomic rearrangement that resulted in a negative thermal expansion along two of three orthorhombic crystallographic axes, while the latter corresponds to the structural transition from the orthorhombic Amam phase to the tetragonal I4/mmm one. A similar temperature behavior with the structural transformations in the same temperature ranges was observed in undoped Sr3Sn2O7, although the values of lattice parameters of the Eu3+-doped and undoped compounds were found to be slightly different indicating an incorporation of europium in the crystal lattice. A dielectric anomaly associated with a structural phase transition was observed in Sr3Sn2O7 at 390 K. Optical measurements performed over a wide temperature range demonstrated a clear correlation between structural transformations in Eu3+-doped Sr2SnO4 and Sr3Sn2O7 and the temperature anomalies of their luminescence spectra, suggesting the efficacy of this method for the determination of subtle phase transformations
Composition-, temperature- and pressure-induced transitions between high-pressure stabilized perovskite phases of the (1-x)BiFe0.5Sc0.5O3 - xLaFe0.5Sc0.5O3 series
Crystal structures of the high-pressure synthesized perovskite phases of the (1-x)BiFe0.5Sc0.5O3-xLaFe0.5Sc0.5O3 (0 = x ≤ 1) system and their temperature and pressure behaviours were studied using laboratory and synchrotron X-ray diffractions as well as neutron diffraction. At room temperature, the as-prepared phases with x ≤ 0.05 have an antipolar structure with the Pnma symmetry and with the √2ap × 4ap × 2√2ap superstructure (where ap is the pseudocubic perovskite unit-cell parameter). An incommensurately modulated phase with the Imma(00γ)s00 superspace group is observed for 0.10 = x ≤ 0.33, while a non-polar Pnma phase (√2ap × 2ap × √2ap) is stable when x ≥ 0.34. The antipolar Pnma phase in the as-prepared samples with composition corresponding to x = 0 transforms into the polar Ima2 one via irreversible annealing-caused transformation accompanied by a formation of a high-temperature intermediate polar R3c polymorph, while the antipolar Pnma phase in samples with x = 0.05 is stable until the decomposition temperature. In the solid solutions with 0.10 = x ≤ 0.33, increasing temperature was found to result in a reversible transformation of the Imma(00γ)s00 phase into a non-polar Pnma one. The transition temperature decreases with increasing x. A hydrostatic pressure of few GPa was also shown to induce a reversible Imma(00γ)s00 → Pnma transformation.publishe
Exchange bias effect in bulk multiferroic BiFe0.5Sc0.5O3
Below the Néel temperature, TN ∼ 220 K, at least two nano-scale antiferromagnetic (AFM) phases coexist in the polar polymorph of the BiFe0.5Sc0.5O3 perovskite; one of these phases is a weak ferromagnetic. Non-uniform structure distortions induced by high-pressure synthesis lead to competing AFM orders and a nano-scale spontaneous magnetic phase separated state of the compound. Interface exchange coupling between the AFM domains and the weak ferromagnetic domains causes unidirectional anisotropy of magnetization, resulting in the exchange bias (EB) effect. The EB field, HEB, and the coercive field strongly depend on temperature and the strength of the cooling magnetic field. HEB increases with an increase in the cooling magnetic field and reaches a maximum value of about 1 kOe at 5 K. The exchange field vanishes above TN with the disappearance of long-range magnetic ordering. The effect is promising for applications in electronics as it is large enough and as it is tunable by temperature and the magnetic field applied during cooling.publishe
Metastable perovskite Bi1-xLaxFe0.5Sc0.5O3 phases in the range of the compositional crossover
Perovskite ceramics of the Bi1- xLaxFe0.5Sc0.5O3 composition (0.30 ≤ x ≤ 0.35) that cannot be sintered in bulk form as a single phase using the conventional ceramic route were successfully prepared using the high-pressure/high-temperature technique. It has been shown that the room-temperature compositional crossover from the antipolar phase whose incommensurate modulation of displacements of Bi/La and oxygen is described by the Imma(00γ)s00 superspace group to the non-polar Pnma phase occurs in the narrow range between x = 0.33 and x = 0.34 with no phase coexistence. The features of this compositional crossover are discussed in comparison with that observed in the Bi1- xLaxFeO3 system.publishe
A Call for Curriculum and Faculty Developers to Attend to Ambitious Teaching in Experiential Curriculum
Low temperature synthesis and characterization of strontium stannate–titanate ceramics
Dielectric and Impedance Spectroscopy of BaSnO<sub>3</sub>and Ba<sub>2</sub>SnO<sub>4</sub>
Mentoring as More Than “Cheerleading”: Looking at Educative Mentoring Practices Through Mentors’ Eyes
- …
