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Abstract 

Perovskite ceramics of the Bi1-xLaxFe0.5Sc0.5O3 composition (0.30≤x≤0.35) that cannot be 

sintered in bulk form as a single phase using the conventional ceramic route were successfully 

prepared using the high-pressure/high-temperature technique. It has been shown that the room-

temperature compositional crossover from the antipolar phase whose incommensurate 

modulation of displacements of Bi/La and oxygen is described by the Imma(00γ)s00 superspace 

group to the non-polar Pnma phase occurs in the narrow range between x=0.33 and x=0.34 with 

no phase coexistence. The features of this compositional crossover are discussed in comparison 

with that observed in the Bi1-xLaxFeO3 system.  
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Introduction  

Perovskite bismuth ferrite is one of the most studied multiferroics since this compound can be 

obtained using the conventional preparation methods. BiFeO3 is ferroelectric until TС=1083 K 

while the magnetic-paramagnetic phase transition occurs at TN=643 K [1]. The temperatures of 

both transitions are too high and far from each other which makes difficult a beneficial use of the 

lattice-magnetic coupling effect. Moreover, in bulk BiFeO3, the spins form a long-period cycloid 

that results in averaging of the local weak ferromagnetic components to zero [2]. A zero-field 

polar weak-ferromagnetic state in bismuth ferrite can be stabilized by means of chemical 

dopings. Besides, substitutions in the Bi3+ sites and in the Fe3+ sites modify the temperatures of 

the ferroelectric transition and the magnetic transition, respectively. A number of studies have 

been performed in this respect [3-6].  

The BiFeO3-based solid solution systems where bismuth is substituted by a rear earth 

element are the most explored (Ref [7] and references therein). Structural phases different from 

the parent rhombohedral R3c have been obtained and thoroughly studied [8-12]. Fe-site 

substitutions in bismuth ferrite are much less investigated since, in the majority of cases, small 

substitution rates (an order of 10 mol% when the resulting structure is still rhombohedral) are 

only achievable. As a rule, non-conventional preparation methods are needed to obtain the 

extended (entire) solid solution systems with substitution either in Fe3+ sites or in both cation 

sites. Polycrystalline solid solutions Bi(Fe,B3+)O3 where B3+ is Co, Ga, Mn, Cr, Sc were prepared 

using the high-pressure/high-temperature method [13-18].  

Recently, we initiated a systematic study of the quasi quadruple BiFeO3–BiScO3–LaFeO3–

LaScO3 perovskite system. Three end members of this system, BiFeO3, LaFeO3 and LaScO3, can 

be obtained using the conventional methods (in particular, the standard ceramic technique), 

while a bulk perovskite BiScO3 phase can be synthesized under the high-pressure conditions 

only [19]. The main idea of the exploration of the Bi1-xLaxFe1-yScyO3 system is to control (adjust) 

the temperatures of the magnetic and the polar transitions. In this system, all the constituent 

cations are trivalent that makes possible to vary the parameters x and y independently. Hence, 

one can decrease the temperature of polar transition by means of a replacement of bismuth by 

lanthanum and decrease the temperature of magnetic transition through an iron-to-scandium 

substitution. Therein, the purpose of this study was to obtain the solid solution with the 

overlapping ranges of TC and TN aiming to achieve the maximal lattice-magnetic coupling effect.  

We have reported three different structural phases observed in the as-prepared 

polycrystalline samples of the particular section of the system, when the Fe/Sc ratio is fixed to be 

1:1. At room temperature, the perovskite phase of the Bi1-xLaxFe0.5Sc0.5O3 ceramics with x=0 was 
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found to be antipolar Pnma with the √2ap×4ap×2√2ap superstructure (ap is the pseudocubic unit 

cell) [20]. In the ceramics with the x=0.20 composition, an incommensurate modulation of 

displacements of Bi/La and oxygen is described by the Imma(00γ)s00 superspace group 

(√2ap×2ap×√2ap) [21]. Non-polar Pnma phase (√2ap×2ap×√2ap) was detected in the samples 

with x=0.35 [22]. In all the mentioned compositions, the magnetic transition was observed at 

about 220 K [20-24], i.e. slightly below room temperature. Below TN, these solid solutions were 

shown to exhibit long-range antiferromagnetic ordering with a weak ferromagnetic component.  

Neutron diffraction study of the Bi1-xLaxFe0.5Sc0.5O3 ceramics with x=0.35 performed 

between room temperature and 1.5 K has revealed no transition from the non-polar Pnma phase 

[22]. Thus, at room temperature, the solid solution with x=0.20 is an antipolar while that with 

x=0.35 is a non-polar. Hence, the composition of the solid solution whose transition between the 

antipolar phase and non-polar phase occurs in the vicinity of room temperature is certainly 

between 0.20 and 0.35.  

In this work, the Bi1-xLaxFe0.5Sc0.5O3 solid solutions in the range of 0.30≤x≤0.35 were 

prepared and thoroughly investigated aiming at determination of the compositional phase 

crossover and identify the composition for which TС is close to TN. The ceramics were 

synthesized/sintered under high pressure. The obtained samples were characterized using the 

methods of x-ray diffraction (including in situ temperature XRD) and dielectric spectroscopy. 

The features of this compositional crossover are discussed in comparison with that observed in 

the Bi1-xLaxFeO3 system.  

 

Experimental  

High-purity Bi2O3, La2O3, Fe2O3, and Sc2O3 were used as starting reagents to prepare the Bi1-

xLaxFe0.5Sc0.5O3 compositions with x=0.30 and 0.35. Previously calcined oxides were mixed in 

the stoichiometric ratio, ball milled in acetone, dried, and pressed into pellets. The pellets were 

heated in a closed alumina crucible at 1140 K for 10 min followed by a quenching down to room 

temperature to be then used for the high-pressure synthesis/sintering.  

Since the crystal structure of the Bi1-xLaxFe0.5Sc0.5O3 phases is certainly very sensitive to x, 

it is a fundamental issue to ensure the proper chemical composition in the precursors and, 

thereby, in the ceramics. The sol-gel method is known to offer opportunity to obtain ultra-

homogeneous complex oxide materials. Therefore, the Bi1-xLaxFe0.5Sc0.5O3 precursors (x=0.30-

0.35, step 0.01) were also prepared via a sol-gel combustion route using nitrates of the respective 

metals. The appropriate volumes of the nitrates were mixed together in a beaker and complexing 

agent (citric acid monohydrate) was then added to the above solution in different molar ratios 
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according to propellant chemistry. The resulted solution was mixed for 1 h at 333 K and then 

concentrated by evaporation of solvent at 373 K until it turned into a brown viscous gel. Finally, 

the resulted gel was heated up to about 670 K to initiate combustion reaction. The obtained ultra-

fine powders were calcined in air at 870 K for 2 h to remove organic remains. High-power 

sonication of the powders was performed in ethanol in the cavitation regime using a water cooled 

30-ml cell. The ultrasonic generator power was 0.5 kW, the treatment time was 20 min. The 

dried powder was pressed into pellets and used for the high-pressure synthesis/sintering without 

any additional thermal treatment.  

High pressure was generated using an anvil press DO-138A with a press capacity up to 

6300 kN. The ceramic samples were prepared at 6 GPa for 1-2 min. In order to produce ceramics 

from the thermally treated mixture of oxides, one needed the synthesis/sintering temperature to 

be in the range of 1420-1520 K, while in case of the sol-gel prepared precursor the temperature 

of 1020-1120 K was enough. 

Powder XRD study of the precursors and the sintered samples was performed using a 

PANalytical XPert MPD PRO diffractometer (Ni-filtered CuKα radiation, PIXcel1D detector, and 

the exposition corresponded to about 2 s per step of 0.02o over the angular range of 15-100o) at 

room temperature. In situ XRD measurements were conducted in an Anton Paar high-

temperature chamber (HTK 16N) in a temperature range between 300 K and 870 K. Rietveld 

refinements of the diffraction data have been performed using JANA 2006 software [25]. For the 

x=0.35 composition, the room temperature structural parameters were refined from both X-ray 

and neutron diffraction data (see Ref. [22] for details of the neutron diffraction experiment) 

revealing their excellent agreement.  

The microstructure of the fractured surface and local chemical composition of the obtained 

ceramics was studied by scanning electron microscopy (SEM, Hitachi S-4100) equipped with an 

energy dispersive spectroscopy (EDS) detector.  

Dielectric measurements were performed in the temperature range of 100-500 K and at 

frequencies from 20 Hz to 2 GHz using an LCR meter (HP 4284A) and a Vector Network 

Analyser (Agilent 8714ET). The ceramic samples were polished to obtain discs of about 0.5 mm 

thick and then electroded with silver paste.  
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Results and Discussion 

Attempts to prepare a single-phase Bi1-xLaxFe0.5Sc0.5O3 perovskite solid solution with x=0.30 

using the conventional ceramic route were unsuccessful. Two main phases were detected in the 

product of thermal treatment of the stoichiometric mixture of oxides, namely a perovskite phase 

derived from BiFeO3 with the rhombohedral distortion of the crystal lattice and a phase based on 

either γ- or β- modifications of Bi2O3 (depending on the treatment temperature) [18]. Direct 

synthesis under high pressure from the oxide mixture without thermal treatment has resulted in 

no single-phase product: along with the perovskite phase, a monoclinic phase based on bismuth 

oxide was present [18]. Single-phase perovskite ceramics with x=0.30 have been prepared by 

means of high-pressure synthesis/sintering of the thermally treated oxide mixture as indicated in 

Experimental.  

It has been found from the analysis of the XRD pattern of these ceramics that the 

symmetry of the as-prepared phase with x=0.30 is the same as that of the phase with x=0.20, 

namely an incommensurately modulated antipolar phase that can be described using the 

Imma(00γ)s00 superspace group [21]. Thus, the range of interest can be specialized: in the Bi1-

xLaxFe0.5Sc0.5O3 system, the crossover from antipolar to non-polar phase occurs in the range 

between x=0.30 and 0.35. The compositional behaviour of the normalized unit-cell volume in 

this range suggests likely structural transition: the volume value drops by about 0.8%; i.e., by 

1.6% per step of Δx=0.10. Cf: in the range of x between 0.20-0.30 where the solid solutions 

remain antipolar, the observed decrease of the volume is as small as about 0.4% per the same 

step.  
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Figure 1. XRD patterns of the Bi0.7La0.3Fe0.5Sc0.5O3 samples at different temperatures (on 

heating) below and above the transition between the antipolar and non-polar perovskite phases. 

Reflections (111) and (210) of the non-polar Pnma phase are marked with open cycles and 

asterisks, respectively.  
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In situ XRD study has revealed that the antipolar phase of the Bi1-xLaxFe0.5Sc0.5O3 solid 

solution with x=0.30 transforms on heating into the non-polar Pnma phase which is similar to 

that detected in the as-prepared samples of the x=0.35 composition [22]. The transformation was 

found to be reversible. On heating, the Imma(00γ)s00→Pnma transition begins at about 450 K; 

on cooling, the Pnma→Imma(00γ)s00 transition is complete at about 440 K. Beginning (ending) 

of the transition was determined by appearance (disappearance) of the weak commensurate 

reflections (111) and (210) characteristic of the non-polar phase (Figure 1).  
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Figure 2. Temperature dependence of the real (left) and the imaginary (right) parts of complex 

dielectric permittivity of the Bi0.7La0.3Fe0.5Sc0.5O3 ceramic sample at selected frequencies. 

 

Dielectric measurements confirmed the transition in the ceramics with the x=0.30 

composition (Figure 2). The obtained temperature dependences of complex dielectric 

permittivity for Bi0.7La0.3Fe0.5Sc0.5O3 exhibit anomalous behavior at about 460 K, clearly visible 

at frequencies above 20 MHz. This anomaly is associated with the antipolar-nonpolar phase 

transition which was observed in the in situ XRD study. At lower frequencies, rather high 

dielectric losses indicate contribution of conductivity and no polar nature of the material can be 

observed.  

It is well known that the materials based on BiFeO3 are characterized by a high loss caused 

by the electronic structure of this compound (intrinsic loss). However, in our ceramics, an 

extrinsic contribution to the loss, i.e. loss associated with the microstructure is certainly 

considerable. It was found from the high-pressure experiments that homogeneous ceramics of the 

satisfactory quality can be prepared only in a very narrow temperature range. When the 

synthesis/sintering temperature is not high enough, the obtained material is very porous and 

poorly sintered. Application of the temperature that exceeds the range results in formation of a 

considerable amount of liquid phase in which the big grains grow up.  

Typical microstructure of the fractured surface of the high-pressure prepared ceramics is 

shown in Figure 3a. The relatively thick intergranular layers and the gaps between the grains are 

seen.  
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Figure 3. SEM images of the fractured surfaces of the Bi1-xLaxFe0.5Sc0.5O3 ceramics (x=0.30) 

synthesized/sintered under high pressure (a) from a mechanical mixture of the respective oxides 

and (b) from the powders prepared using a sol-gel combustion route.  

 

In order to produce more homogeneous and dense ceramics at lower synthesis/sintering 

temperature, the advanced methods of precursor preparation were used. XRD analysis of the Bi1-

xLaxFe0.5Sc0.5O3 powders with x from 0.30 to 0.35 (step 0.01) prepared using the sol-gel 

(combustion) method followed by annealing at 870 K revealed that the perovskite phase is the 

only phase present. However, it was impossible to determine the symmetry of the phase since the 

diffraction peaks were broadened (Figure 4). This broadening can be caused either by poor 

crystallization or small crystallite size.  

20 25 30 35 40 45

c
b

(c) 0.173o

(b) 0.408o

 

 

In
te

ns
ity

 (
a.

u.
)

2Theta (deg.)

FWHM

(a) 0.439o

a

38 39 40

 
Figure 4. XRD patterns of the Bi1-xLaxFe0.5Sc0.5O3 powders with x=0.32 prepared using the sol-

gel (combustion) route and annealed at 600oC: (a) as-prepared, (b) sonicated at 0.5 kW for 20 

min, and (c) synthesized/sintered at 6 GPa and 800oC for 1 min. Insert shows the range of the 

(220)/(022) diffraction peak and the respective values of the full width at half maximum 

(FWHM).  

 

It was found that a high-power sonication of the sol-gel prepared powders has a positive 

effect: the diffraction reflections of the perovskite phase became sharper and better resolved. 

Such an effect suggests that the observed peak broadening should be associated with poor 
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(incomplete) crystallization rather than with small size of the crystallites. High-power sonication 

(which is a kind of mechanoactivation) certainly promotes further crystallization of the sol-gel 

prepared powders. This phenomena deserves a particular study which is out of the scope of this 

paper. Although the obtained powders were single-phase perovskite, the attempts to sinter them 

into homogeneous ceramics under ambient pressure were unsuccessful. Different sintering 

temperatures above 870 K were tested; however, the obtained product was either not sintered or 

a non-single phase. The sintered material was found to have a similar phase composition as the 

product of synthesis from the mechanical oxide mixture (as mentioned at the beginning of 

Results and Discussion).  

It turned out that the powders obtained through a sol-gel route followed by a high-power 

sonication can be sintered into single-phase ceramics under high pressure at the temperatures that 

are 300-400 K lower that those applied when preparing ceramics from the thermally treated 

mixed oxide precursors. Comparison of XRD patterns showed that the perovskite phases of the 

ceramic samples of the same nominal composition (with either x=0.30 or x=0.35, see 

Experimental) are identical in terms of crystallinity and the lattice parameters in spite of both 

different ways of the precursor preparations and different temperatures of the high-pressure 

treatment. However, the ceramics produced from the sol-gel prepared precursors was found to be 

more homogeneous and denser: with thinner intergranular layers and smaller gaps between the 

grains (cf. Figure 3a and Figure 3b). An EDS mapping revealed a more homogeneous 

distribution of iron and scandium over the grains and the intergranular layers.  
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Figure 5. The normalized unit-cell volume of the Bi1-xLaxFe0.5Sc0.5O3 perovskite phases at room 

temperature as a function of the lanthanum content in the compositional range of 0.30≤x≤0.35. 

Dashed line shows the tentative border between the antipolar phase and the non-polar phases at 

room temperature.  
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It was found from the analysis of the XRD patterns of these ceramics that the Bi1-

xLaxFe0.5Sc0.5O3 perovskite phase is an incommensurate antipolar Imma(00γ)s00 when x≤0.33 

and a non-polar Pnma when x≥0.34. Figure 5 shows the compositional dependence of the 

normalized unit cell volume in the range from 0.30 to 0.35. No region of phase coexistence has 

been detected. In this respect, the composition-phase behaviour of the Bi1-xLaxFe0.5Sc0.5O3 

perovskite solid solutions in the range of crossover from antipolar phase to non-polar one is a 

striking departure from that generally observed in the perovskite systems derived from bismuth 

ferrite. The BiFeO3-based solid solution systems where bismuth is substituted by a rear earth 

element demonstrate a wide-range phase coexistence at the antipolar-to-non-polar compositional 

crossover [26-28]. Particularly, in the Bi1-xLaxFeO3 system, such a crossover occurs over the 

range of at least 10 mol% [29]. Although the lanthanum-substituted BiFeO3 perovskites are the 

most studied among the system based on bismuth ferrite, there are several different opinions on 

nature of coexisting phases in this range [26,29-34]. Overlapped diffraction peaks in XRD 

patterns result in difficulties/ uncertainties in identification of the phases.  

The energy landscape of BiFeO3-based compositions consists of several almost degenerate 

phase states. That is why a phase coexistence is typical of these materials. However, the phase 

states can be switched by some perturbations. We assume that pressure acts as such a 

perturbation and makes the composition-phase dependence more certain. The Bi1-

xLaxFe0.5Sc0.5O3 phases were obtained by means of sintering under high pressure followed a 

quenching down to room temperature. It appears that under pressure a difference in energies of 

the phases with different symmetries is more noticeable and one phase or another becomes 

certainly more favourable.  

Detailed dielectric study and investigation of the magneto-electric effect in the Bi1-

xLaxFe0.5Sc0.5O3 ceramics with 0.30≤x≤0.35 are in progress and will be published elsewhere.  

 

Conclusions  

Single-phase perovskite ceramics of the Bi1-xLaxFe0.5Sc0.5O3 composition (0.30≤x≤0.35) cannot 

be prepared using a conventional mixed oxide route. A thermal treatment at ambient pressure of 

a stoichiometric mixture of the respective oxides results in formation of a BiFeO3-like 

rhombohedral perovskite and a phase based on the polymorphic modifications of Bi2O3.  

Bi1-xLaxFe0.5Sc0.5O3 powders (0.30≤x≤0.35) prepared using the sol-gel combustion method 

followed by calcination are single-phase although poorly crystallized. High-power sonication of 

the powders was found to promote further crystallization. This phenomenon deserves a particular 

study. However, regardless of the precursor preparation method (either from the thermally 
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treated oxide mixture or from the sol-gel derived powders), in order to sinter single-phase 

ceramics from these powders, the high-pressure/high-temperature technique is needed. At the 

same time, the powders obtained through a sol-gel route can be sintered into single-phase 

ceramics under high pressure at the temperatures that are 300-400 K lower that those applied 

when preparing ceramics from the thermally treated mixed oxide precursors.  

The compositional crossover from the incommensurately modulated antipolar phase that 

can be described using the Imma(00γ)s00 superspace group to the non-polar Pnma phase in the 

Bi1-xLaxFe0.5Sc0.5O3 system at room temperature occurs between x=0.33 and 0.34 with no range 

of phase coexistence. This very narrow compositional range is of a great interest since it 

corresponds to a solid solution with the maximal lattice-magnetic coupling effect expected.  
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