178 research outputs found

    The Responsibility of the Professional Ecologist in the Preservation of Natural Areas

    Get PDF
    Author Institution: Chairman, Ohio Natural Areas Council ; Director, The Ohio State University Museum of Zoology ; and Curator, The Ohio Historical Society, Columbus 4321

    The Black Bag

    Get PDF

    Radar Cross Section of Orbital Debris Objects

    Get PDF
    This discussion is concerned with the radar-data analysis and usage involved in the building of model orbital debris (OD) populations in the near-Earth environment, focusing on radar cross section (RCS). While varying with radar wavelength, physical dimension, material composition, overall shape and structure, the RCS of an irregular object is also strongly dependent on its spatial orientation. The historical records of observed RCSs for cataloged OD objects in the Space Surveillance Network are usually distributed over an RCS range, forming respective characteristic patterns. The National Aeronautics and Space Administration (NASA) Size Estimation Model provides an empirical probability-density function of RCS as a function of effective diameter (or characteristic length), which makes it feasible to predict possible RCS distributions for a given model OD population and to link data with model from a statistical perspective. The discussion also includes application of the widely used method of moments (MoM) and the Generalized Multi-particle Mie-solution (GMM) in the prediction of the RCS of arbitrarily shaped objects. Theoretical calculation results for an aluminum cube are compared with corresponding experimental measurements

    The Genesis Mission: Contamination Control and Curation

    Get PDF
    The Genesis mission, launched in August 2001, is collecting samples of the solar wind and will return to Earth in 2004. Genesis can be viewed as the most fundamental of NASA's sample return missions because it is expected to provide insight into the initial elemental and isotopic composition of the solar nebula from which all other planetary objects formed. The data from this mission will have a large impact on understanding the origins and diversity of planetary materials. The collectors consist of clean, pure materials into which the solar wind will imbed. Science and engineering issues such as bulk purity, cleanliness, retention of solar wind, and ability to withstand launch and entry drove material choices. Most of the collector materials are installed on array frames that are deployed from a clean science canister. Two of the arrays are continuously exposed for collecting the bulk solar wind; the other three are only exposed during specific solar wind regimes as measured by ion and electron monitors. Other materials are housed as targets at the focal point of an electrostatic mirror, or "concentrator", designed to enhance the flux of specific solar wind species. Johnson Space Center (JSC) has two principal responsibilities for the Genesis mission: contamination control and curation. Precise and accurate measurements of the composition of the solar atoms require that the collector materials be extremely clean and well characterized before launch and during the mission. Early involvement of JSC curation personnel in concept development resulted in a mission designed to minimize contaminants from the spacecraft and operations. A major goal of the Genesis mission is to provide a reservoir of materials for the 21 51 century. When the collector materials are returned to Earth, they must be handled in a clean manner and their condition well documented. Information gained in preliminary examination of the arrays and detailed surveys of each collector will be used to guide sample allocations to the scientific community. Samples allocated for analysis are likely to be small sections of individual collectors, therefore subdividing the materials must take place in a clean, well characterized way. A major focus of current research at JSC includes identifying and characterizing the contamination, waste, and alteration of the sample when using different subdividing, transport, and storage techniques and developing protocols for reducing their impact on the scientific integrity of the mission

    Orbital Debris Research at NASA

    Get PDF
    The United States has one of the most active programs of research of the orbital debris environment in the world. Much of the research is conducted by NASA s Orbital Debris Program Office at the Johnson Space Center. Past work by NASA has led to the development of national space policy which seeks to limit the growth of the debris population and limit the risk to spacecraft and humans in space and on the Earth from debris. NASA has also been instrumental in developing consistent international policies and standards. Much of NASA's efforts have been to measure and characterize the orbital debris population. The U.S. Department of Defense tracks and catalogs spacecraft and large debris with it's Space Surveillance Network while NASA concentrates on research on smaller debris. In low Earth orbit, NASA has utilized short wavelength radars such as Haystack, HAX, and Goldstone to statistically characterize the population in number, size, altitude, and inclination. For higher orbits, optical telescopes have been used. Much effort has gone into the understanding and removal of observational biases from both types of measurements. NASA is also striving to understand the material composition and shape characteristics of debris to assess these effects on the risk to operational spacecraft. All of these measurements along with data from ground tests provide the basis for near- and long-term modeling of the environment. NASA also develops tools used by spacecraft builders and operators to evaluate spacecraft and mission designs to assess compliance with debris standards and policies which limit the growth of the debris environment

    Orbital Debris Research in the United States

    Get PDF
    The presentation includes information about growth of the satellite population, the U.S. Space Surveillance Network, tracking and catalog maintenance, Haystack and HAX radar observation, Goldstone radar, the Michigan Orbital Debris Survey Telescope (MODEST), spacecraft surface examinations and sample of space shuttle impacts. GEO/LEO observations from Kwajalein Atoll, NASA s Orbital Debris Engineering Model (ORDEM2008), a LEO-to-GEO Environment Debris Model (LEGEND), Debris Assessment Software (DAS) 2.0, the NASA/JSC BUMPER-II meteoroid/debris threat assessment code, satellite reentry risk assessment, optical size and shape determination, work on more complicated fragments, and spectral studies

    Identification of a Debris Cloud from the Nuclear Powered SNAPSHOT Satellite with Haystack Radar Measurements

    Get PDF
    Data from the MIT Lincoln Laboratory (MIT/LL) Long Range Imaging Radar (known as the Haystack radar) have been used in the past to examine families of objects from individual satellite breakups or families of orbiting objects that can be isolated in altitude and inclination. This is possible because for some time after a breakup, the debris cloud of particles can remain grouped together in similar orbit planes. This cloud will be visible to the radar, in fixed staring mode, for a short time twice each day, as the orbit plane moves through the field of view. There should be a unique three-dimensional pattern in observation time, range, and range rate which can identify the cloud. Eventually, through slightly differing precession rates of the right ascension of ascending node of the debris cloud, the observation time becomes distributed so that event identification becomes much more difficult. Analyses of the patterns in observation time, range, and range rate have identified good debris candidates released from the polar orbiting SNAPSHOT satellite (International Identifier: 1965-027A). For orbits near 90o inclination, there is essentially no precession of the orbit plane. The SNAPSHOT satellite is a well known nuclear powered satellite launched in 1965 to a near circular 1300 km orbit with an inclination of 90.3o. This satellite began releasing debris in 1979 with new pieces being discovered and cataloged over the years. 51 objects are still being tracked by the United States Space Surveillance Network. An analysis of the Haystack data has identified at least 60 pieces of debris separate from the 51 known tracked debris pieces, where all but 2 of the 60 pieces have a size less than 10cm. The altitude and inclination (derived from range-rate with a circular orbit assumption) are consistent with the SNAPSHOT satellite and its tracked debris cloud

    Growth in the Number of SSN Tracked Orbital Objects

    Get PDF
    The number of objects in earth orbit tracked by the US Space Surveillance Network (SSN) has experienced unprecedented growth since March, 2003. Approximately 2000 orbiting objects have been added to the "Analyst list" of tracked objects. This growth is primarily due to the resumption of full power/full time operation of the AN/FPS-108 Cobra Dane radar located on Shemya Island, AK. Cobra Dane is an L-band (23-cm wavelength) phased array radar which first became operational in 1977. Cobra Dane was a "Collateral Sensor" in the SSN until 1994 when its communication link with the Space Control Center (SCC) was closed. NASA and the Air Force conducted tests in 1999 using Cobra Dane to detect and track small debris. These tests confirmed that the radar was capable of detecting and maintaining orbits on objects as small as 5-cm diameter. Subsequently, Cobra Dane was reconnected to the SSN and resumed full power/full time space surveillance operations on March 4, 2003. This paper will examine the new data and its implications to the understanding of the orbital debris environment and orbital safety

    Orbital Debris: Past, Present, and Future

    Get PDF
    In the early days of spaceflight, the gBig Sky h theory was the near universally accepted paradigm for dealing with collisions of orbiting objects. This theory was also used during the early years of the aviation industry. Just as it did in aviation, the gBig Sky h theory breaks down as more and more objects accumulate in the environment. Fortunately, by the late 1970 fs some visionaries in NASA and the US Department of Defense (DoD) realized that trends in the orbital environment would inevitably lead to increased risks to operational spacecraft from collisions with other orbiting objects. The NASA Orbital Debris Program was established at and has been conducted at Johnson Space Center since 1979. At the start of 1979, fewer than 5000 objects were being tracked by the US Space Surveillance Network and very few attempts had been made to sample the environment for smaller sizes. Today, the number of tracked objects has quadrupled. Ground ]based and in situ measurements have statistically sampled the LEO environment over most sizes and mitigation guidelines and requirements are common among most space faring nations. NASA has been a leader, not only in defining the debris environment, but in promoting awareness of the issues in the US and internationally, and in providing leadership in developing policies to address the issue. This paper will discuss in broad terms the evolution of the NASA debris program from its beginnings to its present broad range of debris related research. The paper will discuss in some detail current research topics and will attempt to predict future research trends
    corecore