11 research outputs found

    Potential environmental transmission routes of SARS-CoV-2 inside a large meat processing plant experiencing COVID-19 clusters

    Get PDF
    Worldwide exceptionally many COVID-19 clusters were observed in meat processing plants. Many contributing factors, promoting transmission, were suggested, including climate conditions in cooled production rooms favorable for environmental transmission but actual sampling studies are lacking. We aimed to assess SARS-CoV-2 contamination of air and surfaces to gain insight in potential environmental transmission in a large Dutch meat processing plant experiencing COVID-19 clusters. We performed SARS-CoV-2 screening of workers operating in cooled production rooms and intensive environmental sampling during a two-week study period in June 2020. Sampling of air (both stationary and personal), settling dust, ventilation systems, and sewage was performed. Swabs were collected from high-touch surfaces and workers’ hands. Screening of workers was done using oronasopharyngeal swabs. Samples were tested for presence of SARS-CoV-2 RNA by RT-qPCR. Of the 76 (predominantly asymptomatic) workers tested, 27 (35.5%) were SARS-CoV-2 RNA positive with modest to low viral loads (Ct≥29.7). In total, 6 out of 203 surface swabs were positive (Ct ≥38), being swabs taken from communal touchscreens/handles. One of the 12 personal air samples and one of the 4 sewage samples were positive, RNA levels were low (Ct≥38). All other environmental samples tested negative. Although one-third of workers tested SARS-CoV-2 RT-PCR positive, environmental contamination was limited. Hence widespread transmission of SARS-CoV-2 via air and surfaces was considered unlikely within this plant at the time of investigation in the context of strict COVID-19 control measures in place

    Increase in invasive disease caused by b, the Netherlands, 2020 to 2021.

    No full text
    The incidence of most respiratory-transmitted diseases decreased during the COVID-19 pandemic as a result of containment measures. In contrast, in the Netherlands we noted an increase in invasive disease caused by Haemophilus influenzae b (Hib) (from  90%). We discuss factors that may have contributed to this rise

    Sensitivity of Detection and Variant Typing of SARS-CoV-2 in European Laboratories.

    No full text
    The molecular detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is key for clinical management and surveillance. Funded by the European Centre for Disease Prevention and Control, we conducted an external quality assessment (EQA) on the molecular detection and variant typing of SARS-CoV-2 that included 59 European laboratories in 34 countries. The EQA panel consisted of 12 lyophilized inactivated samples, 10 of which were SARS-CoV-2 variants (Alpha, Beta, Gamma, Delta, Epsilon, Eta, parental B.1 strain) ranging from 2.5 to 290.0 copies/μL or pooled respiratory viruses (adenovirus, enterovirus, influenza virus A, respiratory syncytial virus, or human coronaviruses 229E and OC43). Of all participants, 72.9% identified the presence of SARS-CoV-2 RNA correctly. In samples containing 25.0 or more genome copies/μL, SARS-CoV-2 was detected by 98.3% of the participating laboratories. Laboratories applying commercial tests scored significantly better (P < 0.0001, Kruskal-Wallis test) than those using in-house assays. Both the molecular detection and the typing of the SARS-CoV-2 variants were associated with the RNA concentrations (P < 0.0001, Kruskal-Wallis test). On average, only 5 out of the 10 samples containing different SARS-CoV-2 variants at different concentrations were correctly typed. The identification of SARS-CoV-2 variants was significantly more successful among EQA participants who combined real-time reverse transcription polymerase chain reaction (RT-PCR)-based assays for mutation detection and high-throughput genomic sequencing than among those who used a single methodological approach (P = 0.0345, Kruskal-Wallis test). Our data highlight the high sensitivity of SARS-CoV-2 detection in expert laboratories as well as the importance of continuous assay development and the benefits of combining different methodologies for accurate SARS-CoV-2 variant typing

    External quality assessment of orthohantavirus and lymphocytic choriomeningitis virus molecular detection and serology in Europe, 2021.

    Get PDF
    Background Rodent-borne viruses such as orthohantaviruses and arenaviruses cause considerable disease burden with regional and temporal differences in incidence and clinical awareness. Therefore, it is important to regularly evaluate laboratory diagnostic capabilities, e.g. by external quality assessments (EQA). Aim We wished to evaluate the performance and diagnostic capability of European expert laboratories to detect orthohantaviruses and lymphocytic choriomeningitis virus (LCMV) and human antibody response towards orthohantaviruses. Methods We conducted an EQA in 2021; molecular panels consisted of 12 samples, including different orthohantaviruses (Seoul, Dobrava-Belgrade (DOBV), Puumala (PUUV) and Hantaan orthohantavirus), LCMV and negative controls. Serological panels consisted of six human serum samples reactive to PUUV, DOBV or negative to orthohantaviruses. The EQA was sent to 25 laboratories in 20 countries. Results The accuracy of molecular detection of orthohantaviruses varied (50‒67%, average 62%) among 16 participating laboratories, while LCMV samples were successfully detected in all 11 participating laboratories (91-100%, average 96%). The accuracy of serological diagnosis of acute and past orthohantavirus infections was on average 95% among 20 participating laboratories and 82% in 19 laboratories, respectively. A variety of methods was used, with predominance of in-house assays for molecular tests, and commercial assays for serological ones. Conclusion Serology, the most common tool to diagnose acute orthohantavirus infections, had a high accuracy in this EQA. The molecular detection of orthohantaviruses needs improvement while LCMV detection (performed in fewer laboratories) had 95% accuracy. Further EQAs are recommended to be performed periodically to monitor improvements and challenges in the diagnostics of rodent–borne diseases.Peer Reviewe

    A comprehensive sampling study on SARS-CoV-2 contamination of air and surfaces in a large meat processing plant experiencing COVID-19 clusters in June 2020.

    Get PDF
    Objective We aimed to assess SARS-CoV-2 contamination of air and surfaces to gain insight into potential occupational exposure in a large meat processing plant experiencing COVID-19 clusters. Methods: Oro-nasopharyngeal SARS-CoV-2 screening was performed in 76 workers. Environmental samples (n = 275) including air, ventilation systems, sewage, and swabs of high-touch surfaces and workers' hands were tested for SARS-CoV-2 RNA by real-time quantitative polymerase chain reaction. Results: Twenty-seven (35.5%) of the (predominantly asymptomatic) workers tested positive with modest to low viral loads (cycle threshold ≥ 29.7). Six of 203 surface swabs, 1 of 12 personal air samples, and one of four sewage samples tested positive; other samples tested negative. Conclusions: Although one third of workers tested positive, environmental contamination was limited. Widespread SARS-CoV-2 transmission via air and surfaces was considered unlikely within this plant at the time of investigation while strict COVID-19 control measures were already implemented

    Potential environmental transmission routes of SARS-CoV-2 inside a large meat processing plant experiencing COVID-19 clusters

    No full text
    Worldwide exceptionally many COVID-19 clusters were observed in meat processing plants. Many contributing factors, promoting transmission, were suggested, including climate conditions in cooled production rooms favorable for environmental transmission but actual sampling studies are lacking. We aimed to assess SARS-CoV-2 contamination of air and surfaces to gain insight in potential environmental transmission in a large Dutch meat processing plant experiencing COVID-19 clusters. We performed SARS-CoV-2 screening of workers operating in cooled production rooms and intensive environmental sampling during a two-week study period in June 2020. Sampling of air (both stationary and personal), settling dust, ventilation systems, and sewage was performed. Swabs were collected from high-touch surfaces and workers’ hands. Screening of workers was done using oronasopharyngeal swabs. Samples were tested for presence of SARS-CoV-2 RNA by RT-qPCR. Of the 76 (predominantly asymptomatic) workers tested, 27 (35.5%) were SARS-CoV-2 RNA positive with modest to low viral loads (Ct≥29.7). In total, 6 out of 203 surface swabs were positive (Ct ≥38), being swabs taken from communal touchscreens/handles. One of the 12 personal air samples and one of the 4 sewage samples were positive, RNA levels were low (Ct≥38). All other environmental samples tested negative. Although one-third of workers tested SARS-CoV-2 RT-PCR positive, environmental contamination was limited. Hence widespread transmission of SARS-CoV-2 via air and surfaces was considered unlikely within this plant at the time of investigation in the context of strict COVID-19 control measures in place

    Comparative study between virus neutralisation testing and other serological methods detecting anti-SARS-CoV-2 antibodies in Europe, 2021.

    Get PDF
    One consequence of the ongoing coronavirus disease pandemic was the rapid development of both in-house and commercial serological assays detecting anti-SARS-CoV-2 antibodies, in an effort to reliably detect acute and past SARS-CoV-2 infections. It is crucial to evaluate the quality of these serological tests and consequently the sero-epidemiological studies that are performed with the respective tests. Here, we describe the set-up and results of a comparative study, in which a laboratory contracted by the European Centre for Disease Prevention and Control offered a centralised service to EU/EEA Member and pre-accession Member States to test representative serum specimens with known serological results, with the gold standard technique (virus neutralisation tests) to determine the presence of neutralising antibodies. Laboratories from 12 European countries shared 719 serum specimens with the contractor laboratory. We found that in-house serological tests detecting neutralising antibodies showed the highest percent agreement, both positive and negative, with the virus neutralisation test results. Despite extensive differences in virus neutralisation protocols neutralisation titres showed a strong correlation. From the commercial assays, the best positive percent agreement was found for SARS-CoV-2 IgG (sCOVG) (Siemens - Atellica IM Analyzer). Despite lower positive percent agreement of LIAISON SARS-CoV-2 TrimericS IgG kit (Diasorin Inc.), the obtained results showed relatively good correlation with neutralisation titres. The set-up of this study allowed for high comparability between laboratories and enabled laboratories that do not have the capacity or capability to perform VNTs themselves. Given the variety of in-house protocols detecting SARS-CoV-2 specific neutralising antibodies, including the virus strain, it could be of interest to select reference isolates for SARS-CoV-2 diagnostic to be made available for interested EU Member States and pre-accession countries
    corecore