423 research outputs found

    Brownian dynamics of elongated particles in a quasi-2D isotropic liquid

    Full text link
    We demonstrate experimentally that the long-range hydrodynamic interactions in an incompressible quasi 2D isotropic fluid result in an anisotropic viscous drag acting on elongated particles. The anisotropy of the drag is increasing with increasing ratio of the particle length to the hydrodynamic scale given by the Saffman-Delbr\"uck length. The micro-rheology data for translational and rotational drags collected over three orders of magnitude of the effective particle length demonstrate the validity of the current theoretical approaches to the hydrodynamics in restricted geometry. The results also demonstrate crossovers between the hydrodynamical regimes determined by the characteristic length scales

    Marangoni flow in freely suspended liquid films

    Get PDF
    We demonstrate controlled material transport driven by temperature gradients in thin freely suspended smectic films. The films with submicrometer thicknesses and lateral extensions of several millimeters were studied in microgravity during suborbital rocket flights. In-plane temperature gradients cause two specific Marangoni effects, directed flow and convection patterns. At low gradients, practically thresholdless, flow transports material with a normal (negative) temperature coefficient of the surface tension, dσ/dT<0d\sigma/dT<0, from the hot to the cold film edge. That material accumulates at the cold film border. In materials with positive temperature coefficient, dσ/dT>0d\sigma/dT>0, the reverse transport from the cold to the hot edge is observed. We present a model that describes the effect quantitatively.Comment: 5 pages, 5 figure

    Heaping, Secondary Flows and Broken Symmetry in Flows of Elongated Granular Particles

    Get PDF
    In this paper we report experiments where we shear granular rods in split-bottom geometries, and find that a significant heap of height of least 40% of the filling height can form at the particle surface. We show that heaping is caused by a significant secondary flow, absent for spherical particles. Flow reversal transiently reverses the secondary flow, leading to a quick collapse and slower regeneration of the heap. We present a symmetry argument and experimental data that show that the generation of the secondary flow is driven by a misalignment of the mean particle orientation with the streamlines of the flow. This general mechanism is expected to be important in all flows of sufficiently anisometric grains.Comment: Accepted for Soft Matte

    Piezoelectric fiber mats containing polar rod-shaped pigment particles

    Get PDF
    We demonstrate converse piezoelectric behavior of electrospun polylactic acid (PLA) fiber mats containing anisometric pigment nanoparticles (Novoperm Carmine HF3C). The effective piezoelectric constant of the fiber mats was estimated to be 2 nm V-1. These findings suggest polarity of the pigment particles obtained by a milling process. Transient electric current measurements were conducted to test the residual polarization of the particles. Piezoelectric fiber mats may be utilized to make colorful electro-active fiber mats and wearable smart clothing

    A fibre forming smectic twist-bent liquid crystalline phase

    Get PDF
    We demonstrate the nanostructure and filament formation of a novel liquid crystal phase of a dimeric mesogen below the twist–bend nematic phase. The new fibre-forming phase is distinguished by a short-correlated smectic order combined with an additional nanoscale periodicity that is not associated with density modulation

    Effects of grain shape on packing and dilatancy of sheared granular materials

    Get PDF
    Granular material exposed to shear shows a variety of unique phenomena: Reynolds dilatancy, positional order and orientational order effects may compete in the shear zone. We study granular packings consisting of macroscopic prolate, oblate and spherical grains and compare their behaviour. X-ray tomography is used to determine the particle positions and orientations in a cylindrical split bottom shear cell. Packing densities and the arrangements of individual particles in the shear zone are evaluated. For anisometric particles, we observe the competition of two opposite effects. One the one hand, the sheared granulate is dilated, but on the other hand the particles reorient and align with respect to the streamlines. Even though aligned cylinders in principle may achieve higher packing densities, this alignment compensates for the effect of dilatancy only partially. The complex rearrangements lead to a depression of the surface above the well oriented region while neigbouring parts still show the effect of dilation in the form of heaps. For grains with isotropic shapes, the surface remains rather flat. Perfect monodisperse spheres crystallize in the shear zone, whereby positional order partially overcompensates dilatancy effects. However, already slight deviations from the ideal monodisperse sphere shape inhibit crystallization.Comment: 12 pages, 13 figures, accepted in Soft Matte

    Evolution of shear zones in granular materials

    Full text link
    The evolution of wide shear zones (or shear bands) was investigated experimentally and numerically for quasistatic dry granular flows in split bottom shear cells. We compare the behavior of materials consisting of beads, irregular grains (e.g. sand) and elongated particles. Shearing an initially random sample, the zone width was found to significantly decrease in the first stage of the process. The characteristic shear strain associated with this decrease is about unity and it is systematically increasing with shape anisotropy, i.e. when the grain shape changes from spherical to irregular (e.g. sand) and becomes elongated (pegs). The strongly decreasing tendency of the zone width is followed by a slight increase which is more pronounced for rod like particles than for grains with smaller shape anisotropy (beads or irregular particles). The evolution of the zone width is connected to shear induced density change and for nonspherical particles it also involves grain reorientation effects. The final zone width is significantly smaller for irregular grains than for spherical beads.Comment: 11 pages, 12 figures, submitted to Phys. Rev.

    Generation of Multiple Circular Walls on a Thin Film of Nematic Liquid Crystal by Laser Scanning

    Full text link
    We found that multiple circular walls (MCW) can be generated on a thin film of a nematic liquid crystal through a spiral scanning of a focused IR laser. The ratios between radii of adjacent rings of MCW were almost constant. These constant ratios can be explained theoretically by minimization of the Frank elastic free energy of nematic medium. The director field on a MCW exhibits chiral symmetry-breaking although the elastic free energies of both chiral MCWs are degenerated, i.e., the director on a MCW can rotate clockwise or counterclockwise along the radial direction.Comment: 10 pages, 5 figures. Submitted to Chemical Physics Letters 2nd Editio
    corecore