11 research outputs found

    Description and growth of larval and pelagic juvenile pygmy rockfish (Sebastes wilsoni) (family Sebastidae)

    Get PDF
    A developmental series of larval and pelagic juvenile pygmy rockfish (Sebastes wilsoni) from central California is illustrated and described. Sebastes wilsoni is a non- commercially, but ecologically, important rockfish, and the ability to differentiate its young stages will aid researchers in population abundance studies. Pigment patterns, meristic characters, morphometric measurements, and head spination were recorded from specimens that ranged from 8.1 to 34.4 mm in standard length. Larvae were identified initially by meristic characters and the absence of ventral and lateral midline pigment. Pelagic juveniles developed a prominent pigment pattern of three body bars that did not extend to the ventral surface. Species identification was confirmed subsequently by using mitochondrial sequence data of four representative specimens of various sizes. As determined from the examination of otoliths, the growth rate of larval and pelagic juvenile pygmy rockfish was 0.28 mm/day, which is relatively slow in comparison to the growth rate of other species of Sebastes. These data will aid researchers in determining species abundance

    Streptococcus iniae Phosphoglucomutase Is a Virulence Factor and a Target for Vaccine Development

    No full text
    Streptococcus iniae represents a major health and economic problem in fish species worldwide. Random Tn917 mutagenesis and high-throughput screening in a hybrid striped bass (HSB) model of meningoencephalitis identified attenuated S. iniae mutants. The Tn917 insertion in one mutant disrupted an S. iniae homologue of a phosphoglucomutase (pgm) gene. Electron microscopy revealed a decrease in capsule thickness and cell wall rigidity, with ΔPGM mutant cells reaching sizes ∼3-fold larger than those of the wild type (WT). The ΔPGM mutant was cleared more rapidly in HSB blood and was more sensitive to killing by cationic antimicrobial peptides including moronecidin from HSB. In vivo, the ΔPGM mutant was severely attenuated in HSB, as intraperitoneal challenge with 1,000 times the WT lethal dose produced only 2.5% mortality. Reintroduction of an intact copy of the S. iniae pgm gene on a plasmid vector restored antimicrobial peptide resistance and virulence to the ΔPGM mutant. In analysis of the aborted infectious process, we found that ΔPGM mutant organisms initially disseminated to the blood, brain, and spleen but were eliminated by 24 h without end organ damage. Ninety to 100% of fish injected with the ΔPGM mutant and later challenged with a lethal dose of WT S. iniae survived. We conclude that the pgm gene is required for virulence in S. iniae, playing a role in normal cell wall morphology, surface capsule expression, and resistance to innate immune clearance mechanisms. An S. iniae ΔPGM mutant is able to stimulate a protective immune response and may have value as a live attenuated vaccine for aquaculture

    Development of paediatric electrophysiology standards for Florida Children’s Medical Services

    No full text
    The Florida Children’s Medical Services (CMS) has a long-standing history of ensuring that providers of multiple paediatric subspecialties abide by the highest standards. The cardiac sub-committee has written quality standard documents that participating programmes must meet or exceed. These standards oversee paediatric cardiology services including surgery, catheterisations, and outpatient services. On April, 2012, the cardiac sub-committee decided to develop similar standards in paediatric electrophysiology. A task force was created and began this process. These standards include a catalogue of required and optional equipment, as well as staff and physician credentials. We sought to establish expectations of procedural numbers by practitioner and facility. The task force surveyed the members of the Pediatric and Congenital Electrophysiology Society. Finding no consensus, the task force is committed to generate the data by requiring that the CMS participating programmes enrol and submit data to the Multicenter Pediatric and Adult Congenital EP Quality (MAP-IT™) Initiative. This manuscript details the work of the Florida CMS Paediatric Electrophysiology Task Force

    CD96 Is an Immune Checkpoint That Regulates CD8(+) T-cell Antitumor Function

    No full text
    CD96 is a novel target for cancer immunotherapy shown to regulate NK cell effector function and metastasis. Here, we demonstrated that blocking CD96 suppressed primary tumor growth in a number of experimental mouse tumor models in a CD8(+) T cell-dependent manner. DNAM-1/ CD226, Batf3, IL12p35, and IFNg were also critical, and CD96-deficient CD8(+) T cells promoted greater tumor control than CD96sufficient CD8(+) T cells. The antitumor activity of anti-CD96 therapy was independent of Fc-mediated effector function and was more effective in dual combination with blockade of a number of immune checkpoints, including PD-1, PD-L1, TIGIT, and CTLA-4. We consistently observed coexpression of PD-1 with CD96 on CD8(+) T lymphocytes in tumor-infiltrating leukocytes both in mouse and human cancers using mRNA analysis, flow cytometry, and multiplex IHF. The combination of anti-CD96 with anti-PD-1 increased the percentage of IFNg-expressing CD8(+) T lymphocytes. Addition of anti-CD96 to anti-PD-1 and anti-TIGIT resulted in superior antitumor responses, regardless of the ability of the anti-TIGIT isotype to engage FcR. The optimal triple combination was also dependent upon CD8(+) T cells and IFNg. Overall, these data demonstrate that CD96 is an immune checkpoint on CD8(+) T cells and that blocking CD96 in combination with other immune-checkpoint inhibitors is a strategy to enhance T-cell activity and suppress tumor growth

    Global conservation status of turtles and tortoises (order Testudines)

    No full text
    We present a review and analysis of the conservation status and International Union for Conservation of Nature (IUCN) threat categories of all 360 currently recognized species of extant and recently extinct turtles and tortoises (Order Testudines). Our analysis is based on the 2018 IUCN Red List status of 251 listed species, augmented by provisional Red List assessments by the IUCN Tortoise and Freshwater Turtle Specialist Group (TFTSG) of 109 currently unlisted species of tortoises and freshwater turtles, as well as re-assessments of several outdated IUCN Red List assessments. Of all recognized species of turtles and tortoises, this combined analysis indicates that 20.0% are Critically Endangered (CR), 35.3% are Critically Endangered or Endangered (CR+EN), and 51.9% are Threatened (CR+EN+Vulnerable). Adjusting for the potential threat levels of Data Deficient (DD) species indicates that 56.3% of all data-sufficient species are Threatened. We calculated percentages of imperiled species and modified Average Threat Levels (ATL; ranging from Least Concern = 1 to Extinct = 8) for various taxonomic and geographic groupings. Proportionally more species in the subfamily Geoemydinae (Asian members of the family Geoemydidae) are imperiled (74.2% CR I EN, 79.0% Threatened, 3.89 ATL) compared to other taxonomic groupings, but the families Podocnemididae, Testudinidae, and Trionychidae and the superfamily Chelonioidea (marine turtles of the families Cheloniidae and Dermochelyidae) also have high percentages of imperiled species and ATLs (42.9-50.0% CR+EN, 73.8-100.0% Threatened, 3.44-4.06 ATL). The subfamily Rhinoclemmydinae (Neotropical turtles of the family Geoemydidae) and the families Kinosternidae and Pelomedusidae have the lowest percentages of imperiled species and ATLs (0%-7.4% CR+EN, 7.4%-13.3% Threatened, 1.65-1.87 ATL). Turtles from Asia have the highest percentages of imperiled species (75.0% CR+EN, 83.0% Threatened, 3.98 ATL), significantly higher than predicted based on the regional species richness, due to much higher levels of exploitation in that geographic region. The family Testudinidae has the highest ATL (4.06) of all Testudines due to the extinction of several species of giant tortoises from Indian and Pacific Ocean islands since 1500 CE. The family Testudinidae also has an ATL higher than all other larger polytypic families (>= 5 species) of Reptilia or Amphibia. The order Testudines is, on average, more imperiled than all other larger orders (>= 20 species) of Reptilia, Amphibia, Mammalia, or Ayes, but has percentages of CR FEN and Threatened species and an ATL (2.96) similar to those of Primates and Caudata (salamanders)
    corecore