117 research outputs found
Combinatorial Alexander Duality -- a Short and Elementary Proof
Let X be a simplicial complex with the ground set V. Define its Alexander
dual as a simplicial complex X* = {A \subset V: V \setminus A \notin X}. The
combinatorial Alexander duality states that the i-th reduced homology group of
X is isomorphic to the (|V|-i-3)-th reduced cohomology group of X* (over a
given commutative ring R). We give a self-contained proof.Comment: 7 pages, 2 figure; v3: the sign function was simplifie
Fractional Diffusion Equation for a Power-Law-Truncated Levy Process
Truncated Levy flights are stochastic processes which display a crossover
from a heavy-tailed Levy behavior to a faster decaying probability distribution
function (pdf). Putting less weight on long flights overcomes the divergence of
the Levy distribution second moment. We introduce a fractional generalization
of the diffusion equation, whose solution defines a process in which a Levy
flight of exponent alpha is truncated by a power-law of exponent 5 - alpha. A
closed form for the characteristic function of the process is derived. The pdf
of the displacement slowly converges to a Gaussian in its central part showing
however a power law far tail. Possible applications are discussed
A class of Baker-Akhiezer arrangements
We study a class of arrangements of lines with multiplicities on the plane which admit the Chalykh–Veselov Baker–Akhiezer function. These arrangements are obtained by adding multiplicity one lines in an invariant way to any dihedral arrangement with invariant multiplicities. We describe all the Baker–Akhiezer arrangements when at most one line has multiplicity higher than 1. We study associated algebras of quasi-invariants which are isomorphic to the commutative algebras of quantum integrals for the generalized Calogero–Moser operators. We compute the Hilbert series of these algebras and we conclude that the algebras are Gorenstein. We also show that there are no other arrangements with Gorenstein algebras of quasi-invariants when at most one line has multiplicity bigger than 1
Scaling detection in time series: diffusion entropy analysis
The methods currently used to determine the scaling exponent of a complex
dynamic process described by a time series are based on the numerical
evaluation of variance. This means that all of them can be safely applied only
to the case where ordinary statistical properties hold true even if strange
kinetics are involved. We illustrate a method of statistical analysis based on
the Shannon entropy of the diffusion process generated by the time series,
called Diffusion Entropy Analysis (DEA). We adopt artificial Gauss and L\'{e}vy
time series, as prototypes of ordinary and anomalus statistics, respectively,
and we analyse them with the DEA and four ordinary methods of analysis, some of
which are very popular. We show that the DEA determines the correct scaling
exponent even when the statistical properties, as well as the dynamic
properties, are anomalous. The other four methods produce correct results in
the Gauss case but fail to detect the correct scaling in the case of L\'{e}vy
statistics.Comment: 21 pages,10 figures, 1 tabl
Topological representations of matroid maps
The Topological Representation Theorem for (oriented) matroids states that
every (oriented) matroid can be realized as the intersection lattice of an
arrangement of codimension one homotopy spheres on a homotopy sphere. In this
paper, we use a construction of Engstr\"om to show that structure-preserving
maps between matroids induce topological mappings between their
representations; a result previously known only in the oriented case.
Specifically, we show that weak maps induce continuous maps and that the
process is a functor from the category of matroids with weak maps to the
homotopy category of topological spaces. We also give a new and conceptual
proof of a result regarding the Whitney numbers of the first kind of a matroid.Comment: Final version, 21 pages, 8 figures; Journal of Algebraic
Combinatorics, 201
Unimodality Problems in Ehrhart Theory
Ehrhart theory is the study of sequences recording the number of integer
points in non-negative integral dilates of rational polytopes. For a given
lattice polytope, this sequence is encoded in a finite vector called the
Ehrhart -vector. Ehrhart -vectors have connections to many areas of
mathematics, including commutative algebra and enumerative combinatorics. In
this survey we discuss what is known about unimodality for Ehrhart
-vectors and highlight open questions and problems.Comment: Published in Recent Trends in Combinatorics, Beveridge, A., et al.
(eds), Springer, 2016, pp 687-711, doi 10.1007/978-3-319-24298-9_27. This
version updated October 2017 to correct an error in the original versio
Scaling in Late Stage Spinodal Decomposition with Quenched Disorder
We study the late stages of spinodal decomposition in a Ginzburg-Landau mean
field model with quenched disorder. Random spatial dependence in the coupling
constants is introduced to model the quenched disorder. The effect of the
disorder on the scaling of the structure factor and on the domain growth is
investigated in both the zero temperature limit and at finite temperature. In
particular, we find that at zero temperature the domain size, , scales
with the amplitude, , of the quenched disorder as with and in two
dimensions. We show that , where is the
Lifshitz-Slyosov exponent. At finite temperature, this simple scaling is not
observed and we suggest that the scaling also depends on temperature and .
We discuss these results in the context of Monte Carlo and cell dynamical
models for phase separation in systems with quenched disorder, and propose that
in a Monte Carlo simulation the concentration of impurities, , is related to
by .Comment: RevTex manuscript 5 pages and 5 figures (obtained upon request via
email [email protected]
Hopf algebras and Markov chains: Two examples and a theory
The operation of squaring (coproduct followed by product) in a combinatorial
Hopf algebra is shown to induce a Markov chain in natural bases. Chains
constructed in this way include widely studied methods of card shuffling, a
natural "rock-breaking" process, and Markov chains on simplicial complexes.
Many of these chains can be explictly diagonalized using the primitive elements
of the algebra and the combinatorics of the free Lie algebra. For card
shuffling, this gives an explicit description of the eigenvectors. For
rock-breaking, an explicit description of the quasi-stationary distribution and
sharp rates to absorption follow.Comment: 51 pages, 17 figures. (Typographical errors corrected. Further fixes
will only appear on the version on Amy Pang's website, the arXiv version will
not be updated.
Linear extension sums as valuations on cones
33 pagesInternational audienceThe geometric and algebraic theory of valuations on cones is applied to understand identities involving summing certain rational functions over the set of linear extensions of a poset
Root polytopes and abelian ideals
We study the root polytope of a finite irreducible
crystallographic root system using its relation with the abelian ideals
of a Borel subalgebra of a simple Lie algebra with root system . We
determine the hyperplane arrangement corresponding to the faces of codimension
2 of and analyze its relation with the facets of . For of type or , we show that the orbits of some
special subsets of abelian ideals under the action of the Weyl group
parametrize a triangulation of . We show that this
triangulation restricts to a triangulation of the positive root polytope
.Comment: 41 pages, revised version, accepted for publication in Journal of
Algebraic Combinatoric
- …