117 research outputs found

    Combinatorial Alexander Duality -- a Short and Elementary Proof

    Full text link
    Let X be a simplicial complex with the ground set V. Define its Alexander dual as a simplicial complex X* = {A \subset V: V \setminus A \notin X}. The combinatorial Alexander duality states that the i-th reduced homology group of X is isomorphic to the (|V|-i-3)-th reduced cohomology group of X* (over a given commutative ring R). We give a self-contained proof.Comment: 7 pages, 2 figure; v3: the sign function was simplifie

    Fractional Diffusion Equation for a Power-Law-Truncated Levy Process

    Full text link
    Truncated Levy flights are stochastic processes which display a crossover from a heavy-tailed Levy behavior to a faster decaying probability distribution function (pdf). Putting less weight on long flights overcomes the divergence of the Levy distribution second moment. We introduce a fractional generalization of the diffusion equation, whose solution defines a process in which a Levy flight of exponent alpha is truncated by a power-law of exponent 5 - alpha. A closed form for the characteristic function of the process is derived. The pdf of the displacement slowly converges to a Gaussian in its central part showing however a power law far tail. Possible applications are discussed

    A class of Baker-Akhiezer arrangements

    Get PDF
    We study a class of arrangements of lines with multiplicities on the plane which admit the Chalykh–Veselov Baker–Akhiezer function. These arrangements are obtained by adding multiplicity one lines in an invariant way to any dihedral arrangement with invariant multiplicities. We describe all the Baker–Akhiezer arrangements when at most one line has multiplicity higher than 1. We study associated algebras of quasi-invariants which are isomorphic to the commutative algebras of quantum integrals for the generalized Calogero–Moser operators. We compute the Hilbert series of these algebras and we conclude that the algebras are Gorenstein. We also show that there are no other arrangements with Gorenstein algebras of quasi-invariants when at most one line has multiplicity bigger than 1

    Scaling detection in time series: diffusion entropy analysis

    Full text link
    The methods currently used to determine the scaling exponent of a complex dynamic process described by a time series are based on the numerical evaluation of variance. This means that all of them can be safely applied only to the case where ordinary statistical properties hold true even if strange kinetics are involved. We illustrate a method of statistical analysis based on the Shannon entropy of the diffusion process generated by the time series, called Diffusion Entropy Analysis (DEA). We adopt artificial Gauss and L\'{e}vy time series, as prototypes of ordinary and anomalus statistics, respectively, and we analyse them with the DEA and four ordinary methods of analysis, some of which are very popular. We show that the DEA determines the correct scaling exponent even when the statistical properties, as well as the dynamic properties, are anomalous. The other four methods produce correct results in the Gauss case but fail to detect the correct scaling in the case of L\'{e}vy statistics.Comment: 21 pages,10 figures, 1 tabl

    Topological representations of matroid maps

    Full text link
    The Topological Representation Theorem for (oriented) matroids states that every (oriented) matroid can be realized as the intersection lattice of an arrangement of codimension one homotopy spheres on a homotopy sphere. In this paper, we use a construction of Engstr\"om to show that structure-preserving maps between matroids induce topological mappings between their representations; a result previously known only in the oriented case. Specifically, we show that weak maps induce continuous maps and that the process is a functor from the category of matroids with weak maps to the homotopy category of topological spaces. We also give a new and conceptual proof of a result regarding the Whitney numbers of the first kind of a matroid.Comment: Final version, 21 pages, 8 figures; Journal of Algebraic Combinatorics, 201

    Unimodality Problems in Ehrhart Theory

    Full text link
    Ehrhart theory is the study of sequences recording the number of integer points in non-negative integral dilates of rational polytopes. For a given lattice polytope, this sequence is encoded in a finite vector called the Ehrhart hh^*-vector. Ehrhart hh^*-vectors have connections to many areas of mathematics, including commutative algebra and enumerative combinatorics. In this survey we discuss what is known about unimodality for Ehrhart hh^*-vectors and highlight open questions and problems.Comment: Published in Recent Trends in Combinatorics, Beveridge, A., et al. (eds), Springer, 2016, pp 687-711, doi 10.1007/978-3-319-24298-9_27. This version updated October 2017 to correct an error in the original versio

    Scaling in Late Stage Spinodal Decomposition with Quenched Disorder

    Full text link
    We study the late stages of spinodal decomposition in a Ginzburg-Landau mean field model with quenched disorder. Random spatial dependence in the coupling constants is introduced to model the quenched disorder. The effect of the disorder on the scaling of the structure factor and on the domain growth is investigated in both the zero temperature limit and at finite temperature. In particular, we find that at zero temperature the domain size, R(t)R(t), scales with the amplitude, AA, of the quenched disorder as R(t)=Aβf(t/Aγ)R(t) = A^{-\beta} f(t/A^{-\gamma}) with β1.0\beta \simeq 1.0 and γ3.0\gamma \simeq 3.0 in two dimensions. We show that β/γ=α\beta/\gamma = \alpha, where α\alpha is the Lifshitz-Slyosov exponent. At finite temperature, this simple scaling is not observed and we suggest that the scaling also depends on temperature and AA. We discuss these results in the context of Monte Carlo and cell dynamical models for phase separation in systems with quenched disorder, and propose that in a Monte Carlo simulation the concentration of impurities, cc, is related to AA by Ac1/dA \sim c^{1/d}.Comment: RevTex manuscript 5 pages and 5 figures (obtained upon request via email [email protected]

    Hopf algebras and Markov chains: Two examples and a theory

    Get PDF
    The operation of squaring (coproduct followed by product) in a combinatorial Hopf algebra is shown to induce a Markov chain in natural bases. Chains constructed in this way include widely studied methods of card shuffling, a natural "rock-breaking" process, and Markov chains on simplicial complexes. Many of these chains can be explictly diagonalized using the primitive elements of the algebra and the combinatorics of the free Lie algebra. For card shuffling, this gives an explicit description of the eigenvectors. For rock-breaking, an explicit description of the quasi-stationary distribution and sharp rates to absorption follow.Comment: 51 pages, 17 figures. (Typographical errors corrected. Further fixes will only appear on the version on Amy Pang's website, the arXiv version will not be updated.

    Linear extension sums as valuations on cones

    Get PDF
    33 pagesInternational audienceThe geometric and algebraic theory of valuations on cones is applied to understand identities involving summing certain rational functions over the set of linear extensions of a poset

    Root polytopes and abelian ideals

    Full text link
    We study the root polytope PΦ\mathcal P_\Phi of a finite irreducible crystallographic root system Φ\Phi using its relation with the abelian ideals of a Borel subalgebra of a simple Lie algebra with root system Φ\Phi. We determine the hyperplane arrangement corresponding to the faces of codimension 2 of PΦ\mathcal P_\Phi and analyze its relation with the facets of PΦ\mathcal P_\Phi. For Φ\Phi of type AnA_n or CnC_n, we show that the orbits of some special subsets of abelian ideals under the action of the Weyl group parametrize a triangulation of PΦ\mathcal P_\Phi. We show that this triangulation restricts to a triangulation of the positive root polytope PΦ+\mathcal P_\Phi^+.Comment: 41 pages, revised version, accepted for publication in Journal of Algebraic Combinatoric
    corecore