Truncated Levy flights are stochastic processes which display a crossover
from a heavy-tailed Levy behavior to a faster decaying probability distribution
function (pdf). Putting less weight on long flights overcomes the divergence of
the Levy distribution second moment. We introduce a fractional generalization
of the diffusion equation, whose solution defines a process in which a Levy
flight of exponent alpha is truncated by a power-law of exponent 5 - alpha. A
closed form for the characteristic function of the process is derived. The pdf
of the displacement slowly converges to a Gaussian in its central part showing
however a power law far tail. Possible applications are discussed