23 research outputs found

    Presynaptic BDNF Required for a Presynaptic but Not Postsynaptic Component of LTP at Hippocampal CA1-CA3 Synapses

    Get PDF
    AbstractBrain-derived neurotrophic factor (BDNF) has been implicated in several forms of long-term potentiation (LTP) at different hippocampal synapses. Using two-photon imaging of FM 1-43, a fluorescent marker of synaptic vesicle cycling, we find that BDNF is selectively required for those forms of LTP at Schaffer collateral synapses that recruit a presynaptic component of expression. BDNF-dependent forms of LTP also require activation of L-type voltage-gated calcium channels. One form of LTP with presynaptic expression, theta burst LTP, is thought to be of particular behavioral importance. Using restricted genetic deletion to selectively disrupt BDNF production in either the entire forebrain (CA3 and CA1) or in only the postsynaptic CA1 neuron, we localize the source of BDNF required for LTP to presynaptic neurons. These results suggest that long-term synaptic plasticity has distinct presynaptic and postsynaptic modules. Release of BDNF from CA3 neurons is required to recruit the presynaptic, but not postsynaptic, module of plasticity

    Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey

    Get PDF
    Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020

    Sound-evoked adenosine release in cooperation with neuromodulatory circuits permits auditory cortical plasticity and perceptual learning

    No full text
    Summary: Meaningful auditory memories are formed in adults when acoustic information is delivered to the auditory cortex during heightened states of attention, vigilance, or alertness, as mediated by neuromodulatory circuits. Here, we identify that, in awake mice, acoustic stimulation triggers auditory thalamocortical projections to release adenosine, which prevents cortical plasticity (i.e., selective expansion of neural representation of behaviorally relevant acoustic stimuli) and perceptual learning (i.e., experience-dependent improvement in frequency discrimination ability). This sound-evoked adenosine release (SEAR) becomes reduced within seconds when acoustic stimuli are tightly paired with the activation of neuromodulatory (cholinergic or dopaminergic) circuits or periods of attentive wakefulness. If thalamic adenosine production is enhanced, then SEAR elevates further, the neuromodulatory circuits are unable to sufficiently reduce SEAR, and associative cortical plasticity and perceptual learning are blocked. This suggests that transient low-adenosine periods triggered by neuromodulatory circuits permit associative cortical plasticity and auditory perceptual learning in adults to occur

    Orphan Glutamate Receptor δ1 Subunit Required for High-Frequency Hearing▿

    No full text
    The function of the orphan glutamate receptor delta subunits (GluRδ1 and GluRδ2) remains unclear. GluRδ2 is expressed exclusively in the Purkinje cells of the cerebellum, and GluRδ1 is prominently expressed in inner ear hair cells and neurons of the hippocampus. We found that mice lacking the GluRδ1 protein displayed significant cochlear threshold shifts for frequencies of >16 kHz. These deficits correlated with a substantial loss of type IV spiral ligament fibrocytes and a significant reduction of endolymphatic potential in high-frequency cochlear regions. Vulnerability to acoustic injury was significantly enhanced; however, the efferent innervation of hair cells and the classic efferent inhibition of outer hair cells were unaffected. Hippocampal and vestibular morphology and function were normal. Our findings show that the orphan GluRδ1 plays an essential role in high-frequency hearing and ionic homeostasis in the basal cochlea, and the locus encoding GluRδ1 represents a candidate gene for congenital or acquired high-frequency hearing loss in humans

    CRTC1 Nuclear Translocation Following Learning Modulates Memory Strength via Exchange of Chromatin Remodeling Complexes on the Fgf1 Gene

    No full text
    Summary: Memory is formed by synapse-to-nucleus communication that leads to regulation of gene transcription, but the identity and organizational logic of signaling pathways involved in this communication remain unclear. Here we find that the transcription cofactor CRTC1 is a critical determinant of sustained gene transcription and memory strength in the hippocampus. Following associative learning, synaptically localized CRTC1 is translocated to the nucleus and regulates Fgf1b transcription in an activity-dependent manner. After both weak and strong training, the HDAC3-N-CoR corepressor complex leaves the Fgf1b promoter and a complex involving the translocated CRTC1, phosphorylated CREB, and histone acetyltransferase CBP induces transient transcription. Strong training later substitutes KAT5 for CBP, a process that is dependent on CRTC1, but not on CREB phosphorylation. This in turn leads to long-lasting Fgf1b transcription and memory enhancement. Thus, memory strength relies on activity-dependent changes in chromatin and temporal regulation of gene transcription on specific CREB/CRTC1 gene targets. : Uchida et al. link CRTC1 synapse-to-nucleus shuttling in memory. Weak and strong training induce CRTC1 nuclear transport and transient Fgf1b transcription by a complex including CRTC1, CREB, and histone acetyltransferase CBP, whereas strong training alone maintains Fgf1b transcription through CRTC1-dependent substitution of KAT5 for CBP, leading to memory enhancement. Keywords: memory enhancement, long-term potentiation, hippocampus, nuclear transport, epigenetics, FGF1, CRTC1, KAT5/Tip60, HDAC3, CRE

    Orphan Glutamate Receptor delta-1 Subunit Required for High-Frequency Hearing

    No full text
    The function of the orphan glutamate receptor delta subunits (GluR 1 and GluR 2) remains unclear. GluR 2 is expressed exclusively in the Purkinje cells of the cerebellum and GluR 1 is prominently expressed in inner ear hair cells and neurons of the hippocampus. We found that mice lacking the GluR 1 protein displayed significant cochlear threshold shifts for frequencies of >16 kHz. These deficits correlated with a substantial loss of type IV spiral ligament fibrocytes and a significant reduction of endolymphatic potential in high-frequency cochlear regions. Vulnerability to acoustic injury was significantly enhanced; however the efferent innervation of hair cells and the classic efferent inhibition of outer hair cells were unaffected. Hippocampal and vestibular morphology and function were normal. Our findings show that the orphan GluR 1 plays an essential role in high-frequency hearing and ionic homeostasis in the basal cochlea and the locus encoding GluR 1 represents a candidate gene for congenital or acquired high-frequency hearing loss in humans. Originally published Molecular and Cellular Biology Vol. 27 No. 12 June 200
    corecore