517 research outputs found
Numerical Evidence for Divergent Burnett Coefficients
In previous papers [Phys. Rev. A {\bf 41}, 4501 (1990), Phys. Rev. E {\bf
18}, 3178 (1993)], simple equilibrium expressions were obtained for nonlinear
Burnett coefficients. A preliminary calculation of a 32 particle Lennard-Jones
fluid was presented in the previous paper. Now, sufficient resources have
become available to address the question of whether nonlinear Burnett
coefficients are finite for soft spheres. The hard sphere case is known to have
infinite nonlinear Burnett coefficients (ie a nonanalytic constitutive
relation) from mode coupling theory. This paper reports a molecular dynamics
caclulation of the third order nonlinear Burnett coefficient of a Lennard-Jones
fluid undergoing colour flow, which indicates that this term is diverges in the
thermodynamic limit.Comment: 12 pages, 9 figure
Statistics of Certain Models of Evolution
In a recent paper, Newman surveys the literature on power law spectra in
evolution, self-organised criticality and presents a model of his own to arrive
at a conclusion that self-organised criticality is not necessary for evolution.
Not only did he miss a key model (Ecolab) that has a clear self-organised
critical mechanism, but also Newman's model exhibits the same mechanism that
gives rise to power law behaviour as does Ecolab. Newman's model is, in fact, a
``mean field'' approximation of a self-organised critical system. In this
paper, I have also implemented Newman's model using the Ecolab software,
removing the restriction that the number of species remains constant. It turns
out that the requirement of constant species number is non-trivial, leading to
a global coupling between species that is similar in effect to the species
interactions seen in Ecolab. In fact, the model must self-organise to a state
where the long time average of speciations balances that of the extinctions,
otherwise the system either collapses or explodes. In view of this, Newman's
model does not provide the hoped-for counter example to the presence of
self-organised criticality in evolution, but does provide a simple, almost
analytic model that can used to understand more intricate models such as
Ecolab.Comment: accepted in Phys Rev E.; RevTeX; See
http://parallel.hpc.unsw.edu.au/rks/ecolab.html for more informatio
A Model For Assessing The Likelihood Of Self-Sustaining Populations Resulting From Commercial Production Of Triploid Suminoe Oysters (Crassostrea Ariakensis) In Chesapeake Bay
Culture of a non-native species, such as the Suminoe oyster (Crassostrea ariakensis), could offset the harvest of the declining native eastern oyster (Crassostrea virginica) fishery in Chesapeake Bay. Because of possible ecological impacts from introducing a fertile non-native species, introduction of sterile triploid oysters has been proposed. However, recent data show that a small percentage of triploid individuals progressively revert toward diploidy, introducing the possibility that Suminoe oysters might establish self-sustaining populations. To assess the risk of Suminoe oyster populations becoming established in Chesapeake Bay, a demographic population model was developed. Parameters modeled were salinity, stocking density, reversion rate, reproductive potential, natural and harvest-induced mortality, growth rates, and effects of various management strategies, including harvest strategies. The probability of a Suminoe oyster population becoming self-sustaining decreased in the model when oysters are grown at low salinity sites, certainty of harvest is high, minimum shell length-at-harvest is small, and stocking density is low. From the results of the model, we suggest adopting the proposed management strategies shown by the model to decrease the probability of a Suminoe oyster population becoming self-sustaining. Policy makers and fishery managers can use the model to predict potential outcomes of policy decisions, supporting the ability to make science-based policy decisions about the proposed introduction of triploid Suminoe oysters into the Chesapeake Bay
Timing of Millisecond Pulsars in NGC 6752: Evidence for a High Mass-to-Light Ratio in the Cluster Core
Using pulse timing observations we have obtained precise parameters,
including positions with about 20 mas accuracy, of five millisecond pulsars in
NGC 6752. Three of them, located relatively close to the cluster center, have
line-of-sight accelerations larger than the maximum value predicted by the
central mass density derived from optical observation, providing dynamical
evidence for a central mass-to-light ratio >~ 10, much higher than for any
other globular cluster. It is likely that the other two millisecond pulsars
have been ejected out of the core to their present locations at 1.4 and 3.3
half-mass radii, respectively, suggesting unusual non-thermal dynamics in the
cluster core.Comment: Accepted by ApJ Letter. 5 pages, 2 figures, 1 tabl
Arecibo Timing and Single Pulse Observations of 18 Pulsars
We present new results of timing and single pulse measurements for 18 radio
pulsars discovered in 1993 - 1997 by the Penn State/NRL declination-strip
survey conducted with the 305-m Arecibo telescope at 430 MHz. Long-term timing
measurements have led to significant improvements of the rotational and the
astrometric parameters of these sources, including the millisecond pulsar, PSR
J1709+2313, and the pulsar located within the supernova remnant S147, PSR
J0538+2817. Single pulse studies of the brightest objects in the sample have
revealed an unusual "bursting" pulsar, PSR J1752+2359, two new drifting
subpulse pulsars, PSR J1649+2533 and PSR J2155+2813, and another example of a
pulsar with profile mode changes, PSR J1746+2540. PSR J1752+2359 is
characterized by bursts of emission, which appear once every 3-5 min. and decay
exponentially on a ~45 sec timescale. PSR J1649+2533 spends ~30% of the time in
a null state with no detectable radio emission.Comment: submitted to Ap
On the perspectives of testing the Dvali-Gabadadze-Porrati gravity model with the outer planets of the Solar System
The multidimensional braneworld gravity model by Dvali, Gabadadze and Porrati
was primarily put forth to explain the observed acceleration of the expansion
of the Universe without resorting to dark energy. One of the most intriguing
features of such a model is that it also predicts small effects on the orbital
motion of test particles which could be tested in such a way that local
measurements at Solar System scales would allow to get information on the
global properties of the Universe. Lue and Starkman derived a secular
extra-perihelion \omega precession of 5\times 10^-4 arcseconds per century,
while Iorio showed that the mean longitude \lambda is affected by a secular
precession of about 10^-3 arcseconds per century. Such effects depend only on
the eccentricities e of the orbits via second-order terms: they are, instead,
independent of their semimajor axes a. Up to now, the observational efforts
focused on the dynamics of the inner planets of the Solar System whose orbits
are the best known via radar ranging. Since the competing Newtonian and
Einsteinian effects like the precessions due to the solar quadrupole mass
moment J2, the gravitoelectric and gravitomagnetic part of the equations of
motion reduce with increasing distances, it would be possible to argue that an
analysis of the orbital dynamics of the outer planets of the Solar System, with
particular emphasis on Saturn because of the ongoing Cassini mission with its
precision ranging instrumentation, could be helpful in evidencing the predicted
new features of motion. In this note we investigate this possibility in view of
the latest results in the planetary ephemeris field. Unfortunately, the current
level of accuracy rules out this appealing possibility and it appears unlikely
that Cassini and GAIA will ameliorate the situation.Comment: LaTex, 22 pages, 2 tables, 10 figures, 27 references. Reference [17]
added, reference [26] updated, caption of figures changed, small change in
section 1.
Cascade of Complexity in Evolving Predator-Prey Dynamics
We simulate an individual-based model that represents both the phenotype and
genome of digital organisms with predator-prey interactions. We show how
open-ended growth of complexity arises from the invariance of genetic evolution
operators with respect to changes in the complexity, and that the dynamics
which emerges is controlled by a non-equilibrium critical point. The mechanism
is analogous to the development of the cascade in fluid turbulence.Comment: 5 pages, 3 figures; added comments on system size scaling and
turbulence analogy, added error estimates of data collapse parameters.
Slightly enhanced from the version which will appear in PR
Parallax of PSR J1744-1134 and the Local Interstellar Medium
We present the annual trigonometric parallax of PSR J1744-1134 derived from
an analysis of pulse times of arrival. The measured parallax, pi = 2.8+/-0.3
mas ranks among the most precisely determined distances to any pulsar. The
parallax distance of 357+/-39 pc is over twice that derived from the dispersion
measure using the Taylor & Cordes model for the Galactic electron distribution.
The mean electron density in the path to the pulsar, n_e = (0.0088 +/- 0.0009)
cm^{-3}, is the lowest for any disk pulsar. We have compared the n_e for PSR
J1744-1134 with those for another 11 nearby pulsars with independent distance
estimates. We conclude that there is a striking asymmetry in the distribution
of electrons in the local interstellar medium. The electron column densities
for pulsars in the third Galactic quadrant are found to be systematically
higher than for those in the first. The former correlate with the position of
the well known local HI cavity in quadrant three. The excess electrons within
the cavity may be in the form of HII clouds marking a region of interaction
between the local hot bubble and a nearby superbubble.Comment: revised version accepted for publication in ApJ Letters; reanalysis
of uncertainty in parallax measure and changes to fig
Pulsar Timing with the Parkes Radio Telescope for the Fermi Mission
We report here on two years of timing of 168 pulsars using the Parkes radio
telescope. The vast majority of these pulsars have spin-down luminosities in
excess of 10^34 erg/s and are prime target candidates to be detected in
gamma-rays by the Fermi Gamma-Ray Space Telescope. We provide the ephemerides
for the ten pulsars being timed at Parkes which have been detected by Fermi in
its first year of operation. These ephemerides, in conjunction with the
publicly available photon list, can be used to generate gamma-ray profiles from
the Fermi archive. We will make the ephemerides of any pulsars of interest
available to the community upon request. In addition to the timing ephemerides,
we present the parameters for 14 glitches which have occurred in 13 pulsars,
seven of which have no previously known glitch history. The Parkes timing
programme, in conjunction with Fermi observations, is expected to continue for
at least the next four years.Comment: Accepted for publication in PASA.12 page
- …