1,862 research outputs found

    A Transfer of Training Study of Control Loader Dynamics

    Get PDF
    The control inceptor used in a simulated vehicle is an important part in maintaining the fidelity of a simulation. The force feedback provided by the control inceptor gives the operator important cues to maintain adequate performance. The dynamics of a control inceptor are typically based on a second order spring mass damper system with damping, force gradient, breakout force, and natural frequency parameters. Changing these parameters can have a great effect on pilot or driver control of the vehicle. The neuromuscular system has a very important role in manipulating the control inceptor within a vehicle. Many studies by McRuer, Aponso, and Hess have dealt with modeling the neuromuscular system and quantifying the effects of a high fidelity control loader as compared to a low fidelity control loader. Humans are adaptive in nature and their control behavior changes based on different control loader dynamics. Humans will change their control behavior to maintain tracking bandwidth and minimize tracking error. This paper reports on a quasi-transfer of training experiment which was performed at the NASA Langley Research Center. The quasi transfer of training study used a high fidelity control loader and a low fidelity control loader. Subjects trained in both simulations and then were transferred to the high fidelity control loader simulation. The parameters for the high fidelity control loader were determined from the literature. The low fidelity control loader parameters were found through testing of a simple computer joystick. A disturbance compensatory task is employed. The compensatory task involves implementing a simple horizon out the window display. A disturbance consisting of a sum of sines is used. The task consists of the subject compensating for the disturbance on the roll angle of the aircraft. The vehicle dynamics are represented as 1/s and 1/s2. The subject will try to maintain level flight throughout the experiment. The subjects consist of non-pilots to remove any effects of pilot experience. First, this paper discusses the implementation of the disturbance compensation task. Second, the high and low fidelity parameters used within the experiment are presented. Finally, an explanation of results from the experiments is presented

    Soluble Guanylate Cyclase Generation of cGMP Regulates Migration of MGE Neurons

    Get PDF
    Here we have provided evidence that nitric oxide-cyclic GMP (NO-cGMP) signaling regulates neurite length and migration of immature neurons derived from the medial ganglionic eminence (MGE). Dlx1/2(-/-) and Lhx6(-/-) mouse mutants, which exhibit MGE interneuron migration defects, have reduced expression of the gene encoding the alpha subunit of a soluble guanylate cyclase (Gucy1A3). Furthermore, Dlx1/2(-/-) mouse mutants have reduced expression of NO synthase 1 (NOS1). Gucy1A3(-/-) mice have a transient reduction in cortical interneuron number. Pharmacological inhibition of soluble guanylate cyclase and NOS activity rapidly induces neurite retraction of MGE cells in vitro and in slice culture and robustly inhibits cell migration from the MGE and caudal ganglionic eminence. We provide evidence that these cellular phenotypes are mediated by activation of the Rho signaling pathway and inhibition of myosin light chain phosphatase activity

    The OPERA magnetic spectrometer

    Full text link
    The OPERA neutrino oscillation experiment foresees the construction of two magnetized iron spectrometers located after the lead-nuclear emulsion targets. The magnet is made up of two vertical walls of rectangular cross section connected by return yokes. The particle trajectories are measured by high precision drift tubes located before and after the arms of the magnet. Moreover, the magnet steel is instrumented with Resistive Plate Chambers that ease pattern recognition and allow a calorimetric measurement of the hadronic showers. In this paper we review the construction of the spectrometers. In particular, we describe the results obtained from the magnet and RPC prototypes and the installation of the final apparatus at the Gran Sasso laboratories. We discuss the mechanical and magnetic properties of the steel and the techniques employed to calibrate the field in the bulk of the magnet. Moreover, results of the tests and issues concerning the mass production of the Resistive Plate Chambers are reported. Finally, the expected physics performance of the detector is described; estimates rely on numerical simulations and the outcome of the tests described above.Comment: 6 pages, 10 figures, presented at the 2003 IEEE-NSS conference, Portland, OR, USA, October 20-24, 200

    Investigation of Control Inceptor Dynamics and Effect on Human Subject Performance

    Get PDF
    The control inceptor used in a vehicle simulation is an important part of adequately representing the dynamics of the vehicle. The inceptor characteristics are typically based on a second order spring mass damper system with damping, force gradient, breakout force, and natural frequency parameters. Changing these parameters can have a great effect on pilot control of the vehicle. A quasi transfer of training experiment was performed employing a high fidelity and a low fidelity control inceptor. A disturbance compensatory task was employed which involved a simple horizon line disturbed in roll by a sum of sinusoids presented in an out-the-window display. Vehicle dynamics were modeled as 1/s and 1/s2. The task was to maintain level flight. Twenty subjects were divided between the high and the low fidelity training groups. Each group was trained to a performance asymptote, and then transferred to the high fidelity simulation. RMS tracking error, a PSD analysis, and a workload analysis were performed to quantify the transfer of training effect. Quantitative results of the experiments show that there is no significant difference between the high and low fidelity training groups for 1/s plant dynamics. For 1/s2 plant dynamics there is a greater difference in tracking performance and PSD; and the subjects are less correlated with the input disturbance functio

    Rho primes in analyzing e+e- annihilation, MARK III, LASS and ARGUS data

    Get PDF
    The results of an analysis are presented of some recent data on the reactions e+eπ+ππ+πe^+e^-\to\pi^+\pi^-\pi^+\pi^-, e+eπ+ππ0π0e^+e^-\to\pi^+\pi^-\pi^0\pi^0 with the subtracted ωπ0\omega\pi^0 events, e+eωπ0e^+e^-\to\omega\pi^0, e+eηπ+πe^+e^-\to\eta \pi^+\pi^-, e+eπ+πe^+e^-\to\pi^+\pi^-, Kpπ+πΛK^-p\to\pi^+\pi^-\Lambda, the decays J/ψπ+ππ0J/\psi\to\pi^+\pi^-\pi^0, tauνtauπ+πππ0tau^-\to\nu_tau\pi^+\pi^-\pi^-\pi^0 tauντωπtau^-\to\nu_\tau\omega\pi^-, upon taking into account both the strong energy dependence of the partial widths on energy and the previously neglected mixing of the ρ\rho type resonances. The above effects are shown to exert an essential influence on the specific values of masses and coupling constants of heavy resonances and hence are necessary to be accounted for in establishing their true nature.Comment: 20 pages, ReVTeX, 9 Postscript figures As compared to hep-ph/9607398, new material concerning the analysis of the ARGUS data on the tau decays into four pion hadronic states is adde

    Electromagnetic form factors in the J/\psi mass region: The case in favor of additional resonances

    Get PDF
    Using the results of our recent analysis of e^+e^- annihilation, we plot the curves for the diagonal and transition form factors of light hadrons in the time-like region up to the production threshold of an open charm quantum number. The comparison with existing data on the decays of J/\psi into such hadrons shows that some new resonance structures may be present in the mass range between 2 GeVand the J/\psi mass. Searching them may help in a better understanding of the mass spectrum in both the simple and a more sophisticated quark models, and in revealing the details of the three-gluon mechanism of the OZI rule breaking in K\bar K channel.Comment: Formulas are added, typo is corrected, the text is rearranged. Replaced to match the version accepted in Phys Rev

    Prospect for Charge Current Neutrino Interactions Measurements at the CERN-PS

    Full text link
    Tensions in several phenomenological models grew with experimental results on neutrino/antineutrino oscillations at Short-Baseline (SBL) and with the recent, carefully recomputed, antineutrino fluxes from nuclear reactors. At a refurbished SBL CERN-PS facility an experiment aimed to address the open issues has been proposed [1], based on the technology of imaging in ultra-pure cryogenic Liquid Argon (LAr). Motivated by this scenario a detailed study of the physics case was performed. We tackled specific physics models and we optimized the neutrino beam through a full simulation. Experimental aspects not fully covered by the LAr detection, i.e. the measurements of the lepton charge on event-by-event basis and their energy over a wide range, were also investigated. Indeed the muon leptons from Charged Current (CC) (anti-)neutrino interactions play an important role in disentangling different phenomenological scenarios provided their charge state is determined. Also, the study of muon appearance/disappearance can benefit of the large statistics of CC muon events from the primary neutrino beam. Results of our study are reported in detail in this proposal. We aim to design, construct and install two Spectrometers at "NEAR" and "FAR" sites of the SBL CERN-PS, compatible with the already proposed LAr detectors. Profiting of the large mass of the two Spectrometers their stand-alone performances have also been exploited.Comment: 70 pages, 38 figures. Proposal submitted to SPS-C, CER

    Prospects for the measurement of muon-neutrino disappearance at the FNAL-Booster

    Full text link
    Neutrino physics is nowadays receiving more and more attention as a possible source of information for the long-standing problem of new physics beyond the Standard Model. The recent measurement of the mixing angle θ13\theta_{13} in the standard mixing oscillation scenario encourages us to pursue the still missing results on leptonic CP violation and absolute neutrino masses. However, puzzling measurements exist that deserve an exhaustive evaluation. The NESSiE Collaboration has been setup to undertake conclusive experiments to clarify the muon-neutrino disappearance measurements at small L/EL/E, which will be able to put severe constraints to models with more than the three-standard neutrinos, or even to robustly measure the presence of a new kind of neutrino oscillation for the first time. To this aim the use of the current FNAL-Booster neutrino beam for a Short-Baseline experiment has been carefully evaluated. This proposal refers to the use of magnetic spectrometers at two different sites, Near and Far. Their positions have been extensively studied, together with the possible performances of two OPERA-like spectrometers. The proposal is constrained by availability of existing hardware and a time-schedule compatible with the CERN project for a new more performant neutrino beam, which will nicely extend the physics results achievable at the Booster. The possible FNAL experiment will allow to clarify the current νμ\nu_{\mu} disappearance tension with νe\nu_e appearance and disappearance at the eV mass scale. Instead, a new CERN neutrino beam would allow a further span in the parameter space together with a refined control of systematics and, more relevant, the measurement of the antineutrino sector, by upgrading the spectrometer with detectors currently under R&D study.Comment: 76 pages, 52 figure
    corecore