20 research outputs found
Versatile optimization-based speed-up method for autofocusing in digital holographic microscopy
We propose a speed-up method for the in-focus plane detection in digital holographic microscopy that can be applied to a broad class of autofocusing algorithms that involve repetitive propagation of an object wave to various axial locations to decide the in-focus position. The classical autofocusing algorithms apply a uniform search strategy, i.e., they probe multiple, uniformly distributed axial locations, which leads to heavy computational overhead. Our method substantially reduces the computational load, without sacrificing the accuracy, by skillfully selecting the next location to investigate, which results in a decreased total number of probed propagation distances. This is achieved by applying the golden selection search with parabolic interpolation, which is the gold standard for tackling single-variable optimization problems. The proposed approach is successfully applied to three diverse autofocusing cases, providing up to 136-fold speed-up
Mn-based methacrylated gellan gum hydrogels for MRI-guided cell delivery and imaging
This work aims to engineer a new stable injectable Mn-based methacrylated gellan gum (Mn/GG-MA) hydrogel for real-time monitored cell delivery into the central nervous system. To enable the hydrogel visualization under Magnetic Resonance Imaging (MRI), GG-MA solutions were supplemented with paramagnetic Mn2+ ions before its ionic crosslink with artificial cerebrospinal fluid (aCSF). The resulting formulations were stable, detectable by T1-weighted MRI scans and also injectable. Cell-laden hydrogels were prepared using the Mn/GG-MA formulations, extruded into aCSF for crosslink, and after 7 days of culture, the encapsulated human adipose-derived stem cells remained viable, as assessed by Live/Dead assay. In vivo tests, using double mutant MBPshi/shi/rag2 immunocompromised mice, showed that the injection of Mn/GG-MA solutions resulted in a continuous and traceable hydrogel, visible on MRI scans. Summing up, the developed formulations are suitable for both non-invasive cell delivery techniques and image-guided neurointerventions, paving the way for new therapeutic procedures.SÃlvia Vieira acknowledges the FCT Ph.D. scholarship (SFRH/BD/102710/2014). J. Miguel
Oliveira and J. Silva-Correia acknowledge the FCT grants under the Investigator FCT program
(IF/01285/2015 and IF/00115/2015, respectively). The authors also acknowledge the funds provided under the project NanoTech4ALS, funded under the EU FP7 M-ERA.NET program, and ESF
(POWR.03.02.00-00-I028/17-00)
The Potential Role of Metalloproteinases in Neurogenesis in the Gerbil Hippocampus Following Global Forebrain Ischemia
BACKGROUND: Matrix metalloproteinases (MMPs) have recently been considered to be involved in the neurogenic response of adult neural stem/progenitor cells. However, there is a lack of information showing direct association between the activation of MMPs and the development of neuronal progenitor cells involving proliferation and/or further differentiation in vulnerable (Cornus Ammoni-CA1) and resistant (dentate gyrus-DG) to ischemic injury areas of the brain hippocampus. PRINCIPAL FINDINGS: We showed that dynamics of MMPs activation in the dentate gyrus correlated closely with the rate of proliferation and differentiation of progenitor cells into mature neurons. In contrast, in the damaged CA1 pyramidal cells layer, despite the fact that some proliferating cells exhibited antigen specific characteristic of newborn neuronal cells, these did not attain maturity. This coincides with the low, near control-level, activity of MMPs. The above results are supported by our in vitro study showing that MMP inhibitors interfered with both the proliferation and differentiation of the human neural stem cell line derived from umbilical cord blood (HUCB-NSCs) toward the neuronal lineage. CONCLUSION: Taken together, the spatial and temporal profiles of MMPs activity suggest that these proteinases could be an important component in neurogenesis-associated processes in post-ischemic brain hippocampus
Glia-Neurotrophic Factor Relationships: Possible Role in Pathobiology of Neuroinflammation-Related Brain Disorders
Neurotrophic factors (NTFs) play an important role in maintaining homeostasis of the central nervous system (CNS) by regulating the survival, differentiation, maturation, and development of neurons and by participating in the regeneration of damaged tissues. Disturbances in the level and functioning of NTFs can lead to many diseases of the nervous system, including degenerative diseases, mental diseases, and neurodevelopmental disorders. Each CNS disease is characterized by a unique pathomechanism, however, the involvement of certain processes in its etiology is common, such as neuroinflammation, dysregulation of NTFs levels, or mitochondrial dysfunction. It has been shown that NTFs can control the activation of glial cells by directing them toward a neuroprotective and anti-inflammatory phenotype and activating signaling pathways responsible for neuronal survival. In this review, our goal is to outline the current state of knowledge about the processes affected by NTFs, the crosstalk between NTFs, mitochondria, and the nervous and immune systems, leading to the inhibition of neuroinflammation and oxidative stress, and thus the inhibition of the development and progression of CNS disorders
Experimental Strategies of Mesenchymal Stem Cell Propagation: Adverse Events and Potential Risk of Functional Changes
Mesenchymal stem cells (MSCs) are attractive candidates for cell-based tissue repair approaches. Hundreds of clinical trials using MSCs have been completed and many others are still being investigated. For most therapeutic applications, MSC propagation in vitro is often required. However, ex vivo culture condition is not fully physiological and may affect biological properties of MSCs including their regenerative potential. Moreover, both cell cryopreservation and labelling procedure prior to infusion may have the negative impact on their expected effect in vivo. The incidence of MSC transformation during in vitro culture should be also taken into consideration before using cells in stem cell therapy. In our review, we focused on different aspects of MSC propagation that might influence their regenerative properties of MSC. We also discussed the influence of different factors that might abolish MSC proliferation and differentiation as well as potential impact of stem cell senescence and aging. Despite of many positive therapeutic effects of MSC therapy, one has to be conscious about potential cell changes that could appear during manufacturing of MSCs
Challenges and Controversies in Human Mesenchymal Stem Cell Therapy
Stem cell therapy is being intensely investigated within the last years. Expectations are high regarding mesenchymal stem cell (MSC) treatment in translational medicine. However, many aspects concerning MSC therapy should be profoundly defined. Due to a variety of approaches that are investigated, potential effects of stem cell therapy are not transparent. On the other hand, most results of MSC administration in vivo have confirmed their safety and showed promising beneficial outcomes. However, the therapeutic effects of MSC-based treatment are still not spectacular and there is a potential risk related to MSC applications into specific cell niche that should be considered in long-term observations and follow-up outcomes. In this review, we intend to address some problems and critically discuss the complex nature of MSCs in the context of their effective and safe applications in regenerative medicine in different diseases including graft versus host disease (GvHD) and cardiac, neurological, and orthopedic disorders
Transplantation of Human Glial Progenitors to Immunodeficient Neonatal Mice with Amyotrophic Lateral Sclerosis (SOD1/rag2)
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal disease with no effective therapy. The neurodegenerative character of ALS was an appealing target for stem cell-based regenerative approaches. Different types of stem cells have been transplanted in both preclinical and clinical settings, but no convincing outcomes have been noted. Human glial restricted precursors (hGRPs) transplanted intraventricularly to neonatal, immunodeficient mice rescued lifespan of dysmyelinated mice. Intraspinal injection of hGRPs also provided benefits in the mouse model of ALS. Therefore, we have recently developed an immunodeficient model of ALS (double mutant SOD1/rag2), and, in this study, we tested the strategy previously used in dysmyelinated mice of intraventricular transplantation of hGRPs to immunodeficient mice. To maximize potential therapeutic benefits, the cells were implanted into neonates. We used magnetic resonance imaging to investigate the progression of neurodegeneration and therapeutic responses. A cohort of animals was devoted to survival assessment. Postmortem analysis included immunohistochemistry, Nissl staining, and Western blots. Cell transplantation was not associated with improved animal survival, slowing neurodegeneration, or accumulation of misfolded superoxide dismutase 1. Postmortem analysis did not reveal any surviving hGRPs. Grafting into neonatal immunodeficient recipients did not prevent ALS-induced cell loss, which might explain the lack of positive therapeutic effects. The results of this study are in line with the modest effects of clinical neurotransplantations. Therefore, we urge stem cell and ALS communities to develop and implement cell tracking methods to better understand cell fates in the clinic
Low-intensity illumination for lensless digital holographic microscopy with minimized sample interaction
Exposure to laser light alters cell culture examination via optical
microscopic imaging techniques, also based on label-free coherent digital
holography. To mitigate this detrimental feature, researchers tend to use a
broader spectrum and lower intensity of illumination, which can decrease the
quality of holographic imaging due to lower resolution and higher noise. We
study the lensless digital holographic microscopy (LDHM) ability to operate in
the low photon budget (LPB) regime to enable imaging of unimpaired live cells
with minimized sample interaction. Low-cost off-the-shelf components are used,
promoting the usability of such a straightforward approach. We show that
recording data in the LPB regime (down to 7 uW of illumination power) does not
limit the contrast nor resolution of the hologram phase and amplitude
reconstruction compared to the regular illumination. The LPB generates hardware
camera shot noise, however, to be effectively minimized via numerical
denoising. The ability to obtain high-quality, high-resolution optical complex
field reconstruction was confirmed using the USAF 1951 amplitude sample, phase
resolution test target, and finally, live glial restricted progenitor cells (as
a challenging strongly absorbing and scattering biomedical sample). The
proposed approach based on severely limiting the photon budget in lensless
holographic microscopy method can open new avenues in high-throughout (optimal
resolution, large field-of-view and high signal-to-noise-ratio single-hologram
reconstruction) cell culture imaging with minimized sample interaction
Neural identity of newly divided cells in the CA1 area after global ischemia.
<p>Animals were subjected to 5 min of global forebrain ischemia followed by reperfusion. BrdU was administered 24 h prior to sacrifice. Brain sections from a control animal (A, D) and from an animal 6 days (B, E ) and 28 days (C, F) after ischemia were stained for BrdU immunoreactivity (green) and neuron-specific NF-200 (A, B, C, G) or the astrocyte-specific GFAP (D, E, F, H) markers (red). C, H represent magnification (z-stacks) of the picture C and E. Six days after ischemia the higher than in control number of BrdU+ cells are seen within the damaged pyramidal cell. Intensive BrdU labeling was observed in <i>strata oriens</i> and <i>radiatum</i>. Depending on the CA1 area BrdU-positive cells expressed distinct antigens – NF-200 exclusively in pyramidal cell layer and GFAP in <i>strata oriens</i> and <i>radiatum</i> as well as in pyramidal cell layer. Photomicrographs are representative of observations made from six animals per time point. Scale bar 10 µm. Abbreviations: p.l. – pyramidal layer; s.o – <i>stratum oriens</i>; s.r.- <i>stratum radiatum</i>.</p