2,860 research outputs found

    Biotechnological aspects of sulfate reduction with methane as electron donor

    Get PDF
    Biological sulfate reduction can be used for the removal and recovery of oxidized sulfur compounds and metals from waste streams. However, the costs of conventional electron donors, like hydrogen and ethanol, limit the application possibilities. Methane from natural gas or biogas would be a more attractive electron donor. Sulfate reduction with methane as electron donor prevails in marine sediments. Recently, several authors succeeded in cultivating the responsible microorganisms in vitro. In addition, the process has been studied in bioreactors. These studies have opened up the possibility to use methane as electron donor for sulfate reduction in wastewater and gas treatment. However, the obtained growth rates of the responsible microorganisms are extremely low, which would be a major limitation for applications. Therefore, further research should focus on novel cultivation technique

    Degradation of BTEX by anaerobic bacteria: physiology and application

    Get PDF
    Pollution of the environment with aromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX) is often observed. The cleanup of these toxic compounds has gained much attention in the last decades. In situ bioremediation of aromatic hydrocarbons contaminated soils and groundwater by naturally occurring microorganisms or microorganisms that are introduced is possible. Anaerobic bioremediation is an attractive technology as these compounds are often present in the anoxic zones of the environment. The bottleneck in the application of anaerobic techniques is the lack of knowledge about the anaerobic biodegradation of benzene and the bacteria involved in anaerobic benzene degradation. Here, we review the existing knowledge on the degradation of benzene and other aromatic hydrocarbons by anaerobic bacteria, in particular the physiology and application, including results on the (per)chlorate stimulated degradation of these compounds, which is an interesting new alternative option for bioremediatio

    Pseudomonas chloritidismutans sp. nov., a non-denitrifying chlorate-reducing bacterium

    Get PDF
    A Gram-negative, facultatively anaerobic, rod-shaped, dissimilatory chlorate-reducing bacterium, strain AW-1(T), was isolated from biomass of an anaerobic chlorate-reducing bioreactor. Phylogenetic analysis of the 16S rDNA sequence showed 100␜equence similarity to Pseudomonas stutzeri DSM 50227 and 98.6␜equence similarity to the type strain of P. stutzeri (DSM 5190(T)). The species P. stutzeri possesses a high degree of genotypic and phenotypic heterogeneity. Therefore, eight genomic groups, termed genomovars, have been proposed based upon DeltaT(m) values, which were used to evaluate the quality of the pairing within heteroduplexes formed by DNA--DNA hybridization. In this study, DNA--DNA hybridization between strain AW-1(T) and P. stutzeri strains DSM 50227 and DSM 5190(T) revealed respectively 80.5 and 56.5␜imilarity. DNA--DNA hybridization between P. stutzeri strains DSM 50227 and DSM 5190(T) revealed 48.4␜imilarity. DNA--DNA hybridization indicated that strain AW-1(T) is not related at the species level to the type strain of P. stutzeri. However, strain AW-1(T) and P. stutzeri DSM 50227 are related at the species level. The physiological and biochemical properties of strain AW-1(T) and the two P. stutzeri strains were compared. A common characteristic of P. stutzeri strains is the ability to denitrify. However, in growth experiments, strain AW-1(T) could use only chlorate or oxygen as an electron acceptor and not nitrate, perchlorate or bromate. Strain AW-1(T) is the first chlorate-reducing bacterium described that does not possess another oxyanion-reduction pathway. Cell extracts of strain AW-1(T) showed chlorate and bromate reductase activities but not nitrate reductase activity. P. stutzeri strains DSM 50227 and DSM 5190(T) could use nitrate or oxygen as an electron acceptor, but not chlorate. Chlorate reductase activity, in addition to nitrate reductase activity, was detected in cell extracts of both P. stutzeri strains. Chlorite dismutase activity was absent in extracts of both P. stutzeri strains but was present in extracts of strain AW-1(T). Based on the hybridization experiments and the physiological and biochemical data, it is proposed that strain AW-1(T) be classified as a novel species of Pseudomonas, Pseudomonas chloritidismutans sp. nov. The type strain is strain AW-1(T) (=DSM 13592(T)=ATCC BAA-443(T))

    "Over-leven aan de onderkant van het bestaan"

    Get PDF

    Growth- and substrate-dependent transcription of formate dehydrogenase and hydrogenase coding genes in Syntrophobacter fumaroxidans and Methanospirillum hungatei

    Get PDF
    Transcription of genes coding for formate dehydrogenases (fdh genes) and hydrogenases (hyd genes) in Syntrophobacter fumaroxidans and Methanospirillum hungatei was studied following growth under different conditions. Under all conditions tested, all fdh and hyd genes were transcribed. However, transcription levels of the individual genes varied depending on the substrate and growth conditions. Our results strongly suggest that in syntrophically grown S. fumaroxidans cells, the [FeFe]-hydrogenase (encoded by Sfum_844-46), FDH1 (Sfum_2703-06) and Hox (Sfum_2713-16) may confurcate electrons from NADH and ferredoxin to protons and carbon dioxide to produce hydrogen and formate, respectively. Based on bioinformatic analysis, a membrane-integrated energy-converting [NiFe]-hydrogenase (Mhun_1741-46) of M. hungatei might be involved in the energy-dependent reduction of CO2 to formylmethanofuran. The best candidates for F420-dependent N5,N10-methyl-H4 MPT and N5,N10,-methylene-H4MPT reduction are the cytoplasmic [NiFe]-hydrogenase and FDH1. 16S rRNA ratios indicate that in one of the triplicate co-cultures of S. fumaroxidans and M. hungatei, less energy was available for S. fumaroxidans. This led to enhanced transcription of genes coding for the Rnf-complex (Sfum_2694-99) and of several fdh and hyd genes. The Rnf-complex probably reoxidized NADH with ferredoxin reduction, followed by ferredoxin oxidation by the induced formate dehydrogenases and hydrogenase

    Assessing the influence of the carbon oxidation-reduction state on organic pollutant biodegradation in algal-bacterial photobioreactors

    Get PDF
    The influence of the carbon oxidation-reduction state (CORS) of organic pollutants on their biodegradation in enclosed algal-bacterial photobioreactors was evaluated using a consortium of enriched wild-type methanotrophic bacteria and microalgae. Methane, methanol and glucose (with CORS -4, -2 and 0, respectively) were chosen as model organic pollutants. In the absence of external oxygen supply, microalgal photosynthesis was not capable of supporting a significant methane and methanol biodegradation due to their high oxygen demands per carbon unit, while glucose was fully oxidized by photosynthetic oxygenation. When bicarbonate was added, removal efficiencies of 37¿±¿4% (20 days), 65¿±¿4% (11 days) and 100% (2 days) were recorded for CH(4,) CH(3)OH and C(6)H(12)O(6), respectively due to the additional oxygen generated from photosynthetic bicarbonate assimilation. The use of NO(3)(-) instead of NH(4)(+) as nitrogen source (N oxidation-reduction state of +5 vs. -3) resulted in an increase in CH(4) degradation from 0 to 33¿±¿3% in the absence of bicarbonate and from 37¿±¿4% to 100% in the presence of bicarbonate, likely due to a decrease in the stoichiometric oxygen requirements and the higher photosynthetic oxygen production. Hypothetically, the CORS of the substrates might affect the CORS of the microalgal biomass composition (higher lipid content). However, the total lipid content of the algal-bacterial biomass was 19¿±¿7% in the absence and 16¿±¿2% in the presence of bicarbonat

    Molecular characterization of mesophilic and thermophilic sulfate reducing microbial communities in expanded granular sludge bed (EGSB) reactors

    Get PDF
    The microbial communities established in mesophilic and thermophilic expanded granular sludge bed reactors operated with sulfate as the electron acceptor were analyzed using 16S rRNA targeted molecular methods, including denaturing gradient gel electrophoresis, cloning, and phylogenetic analysis. Bacterial and archaeal communities were examined over 450 days of operation treating ethanol (thermophilic reactor) or ethanol and later a simulated semiconductor manufacturing wastewater containing citrate, isopropanol, and polyethylene glycol 300 (mesophilic reactor), with and without the addition of copper(II). Analysis, of PCR-amplified 16S rRNA gene fragments using denaturing gradient gel electrophoresis revealed a defined shift in microbial diversity in both reactors following a change in substrate composition (mesophilic reactor) and in temperature of operation from 30 degrees C to 55 degrees C (thermophilic reactor). The addition of copper(II) to the influent of both reactors did not noticeably affect the composition of the bacterial or archaeal communities, which is in agreement with the very low soluble copper concentrations (3-310 microg l(-1)) present in the reactor contents as a consequence of extensive precipitation of copper with biogenic sulfides. Furthermore, clone library analysis confirmed the phylogenetic diversity of sulfate-reducing consortia in mesophilic and thermophilic sulfidogenic reactors operated with simple substrate

    Desulfovibrio paquesii sp. nov., a hydrogenotrophic sulfate-reducing bacterium isolated from a synthesis-gas-fed bioreactor treating zinc- and sulfate-rich wastewater

    Get PDF
    A hydrogenotrophic, sulfate-reducing bacterium, designated strain SB1(T), was isolated from sulfidogenic sludge of a full-scale synthesis-gas-fed bioreactor used to remediate wastewater from a zinc smelter. Strain SB1(T) was found to be an abundant micro-organism in the sludge at the time of isolation. Hydrogen, formate, pyruvate, lactate, malate, fumarate, succinate, ethanol and glycerol served as electron donors for sulfate reduction. Organic substrates were incompletely oxidized to acetate. 16S rRNA gene sequence analysis showed that the closest recognized relative to strain SB1(T) was Desulfovibrio gigas DSM 1382(T) (97.5 % similarity). The G+C content of the genomic DNA of strain SB1(T) was 62.2 mol%, comparable with that of Desulfovibrio gigas DSM 1382(T) (60.2 mol%). However, the level of DNA-DNA relatedness between strain SB1(T) and Desulfovibrio gigas DSM 1382(T) was only 56.0 %, indicating that the two strains are not related at the species level. Strain SB1(T) could also be differentiated from Desulfovibrio gigas based on phenotypic characteristics, such as major cellular fatty acid composition (anteiso-C(15 : 0), iso-C(14 : 0) and C(18 : 1) cis 9) and substrate utilization. Strain SB1(T) is therefore considered to represent a novel species of the genus Desulfovibrio, for which the name Desulfovibrio paquesii sp. nov. is proposed. The type strain is SB1(T) (=DSM 16681(T)=JCM 14635(T)

    A Multilevel Meta‑Analysis

    Get PDF
    Insecure attachment to primary caregivers is associated with the development of depression symptoms in children and youth. This association has been shown by individual studies testing the relation between attachment and depression and by meta-analyses focusing on broad internalizing problems instead of depression or adult samples only. We therefore meta-analytically examined the associations between attachment security and depression in children and adolescents, using a multilevel approach. In total, 643 effect sizes were extracted from 123 independent samples. A significant moderate overall effect size was found (r = .31), indicating that insecure attachment to primary caregivers is associated with depression. Multivariate analysis of the significant moderators that impacted on the strength of the association between attachment security and depression showed that country of the study, study design, gender, the type of attachment, and the type of instrument to assess attachment uniquely contributed to the explanation of variance. This study suggests that insecure attachment may be a predictor of the development of depression in children and adolescents. When treating depression in children, attachment should therefore be addressed
    corecore