33 research outputs found
P. brasiliensis virulence is affected by SconC, the negative regulator of inorganic sulfur assimilation
Conidia/mycelium-to-yeast transition of Paracoccidioidesbrasiliensis is a critical step for the establishment of paracoccidioidomycosis, a systemic mycosis endemic in Latin America. Thus, knowledge of the factors that mediate this transition is of major importance for the design of intervention strategies. So far, the only known pre-requisites for the accomplishment of the morphological transition are the temperature shift to 37°C and the availability of organic sulfur compounds. In this study, we investigated the auxotrophic nature to organic sulfur of the yeast phase of Paracoccidioides, with special attention to P. brasiliensis species. For this, we addressed the role of SconCp, the negative regulator of the inorganic sulfur assimilation pathway, in the dimorphism and virulence of this pathogen. We show that down-regulation of SCONC allows initial steps of mycelium-to-yeast transition in the absence of organic sulfur compounds, contrarily to the wild-type fungus that cannot undergo mycelium-to-yeast transition under such conditions. However, SCONC down-regulated transformants were unable to sustain yeast growth using inorganic sulfur compounds only. Moreover, pulses with inorganic sulfur in SCONC down-regulated transformants triggered an increase of the inorganic sulfur metabolism, which culminated in a drastic reduction of the ATP and NADPH cellular levels and in higher oxidative stress. Importantly, the down-regulation of SCONC resulted in a decreased virulence of P. brasiliensis, as validated in an in vivo model of infection. Overall, our findings shed light on the inability of P. brasiliensis yeast to rely on inorganic sulfur compounds, correlating its metabolism with cellular energy and redox imbalances. Furthermore, the data herein presented reveal SconCp as a novel virulence determinant of P. brasiliensis.J.F.M. and J.G.R. were supported by a PhD grant from Fundacao para a Ciencia e Tecnologia (FCT). This work was supported by a grant from FCT (PTDC/BIA-MIC/108309/2008). M. Sturme. and M. Saraiva are Ciencia 2008 fellows. The authors would also like to thank FAPESP (Fundacao para Amparo a Pesquisa do Estado de Sao Paulo) and CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico) for financial support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Extracellular maltotriose hydrolysis by Saccharomyces cerevisiae cells lacking the AGT1 permease
In brewing, maltotriose is the least preferred sugar for uptake by Saccharomyces cerevisiae cells. Although the AGT1 permease is required for efficient maltotriose fermentation, we have described a new phenotype in some agt1Δ strains of which the cells do not grow on maltotriose during the first 3-4 days of incubation, but after that, they start to grow on the sugar aerobically. Aiming to characterize this new phenotype, we performed microarray gene expression analysis which indicated upregulation of high-affinity glucose transporters (HXT4, HXT6 and HXT7) and α-glucosidases (MAL12 and IMA5) during this delayed cellular growth. Since these results suggested that this phenotype might be due to extracellular hydrolysis of maltotriose, we attempted to detect glucose in the media during growth. When an hxt-null agt1Δ strain was grown on maltotriose, it also showed the delayed growth on this carbon source, and glucose accumulated in the medium during maltotriose consumption. Considering that the poorly characterized α-glucosidase encoded by IMA5 was among the overexpressed genes, we deleted this gene from an agt1Δ strain that showed delayed growth on maltotriose. The ima5Δ agt1Δ strain showed no maltotriose utilization even after 200 h of incubation, suggesting that IMA5 is likely responsible for the extracellular maltotriose hydrolysis. SIGNIFICANCE AND IMPACT OF THE STUDY: Maltotriose is the second most abundant sugar present in brewing. However, many yeast strains have difficulties to consume maltotriose, mainly because of its low uptake rate by the yeast cells when compared to glucose and maltose uptake. The AGT1 permease is required for efficient maltotriose fermentation, but some strains deleted in this gene are still able to grow on maltotriose after an extensive lag phase. This manuscript shows that such delayed growth on maltotriose is a consequence of extracellular hydrolysis of the sugar. Our results also indicate that the IMA5-encoded α-glucosidase is likely the enzyme responsible for this phenotype.status: publishe
Switching the mode of sucrose utilization by <it>Saccharomyces cerevisiae</it>
<p>Abstract</p> <p>Background</p> <p>Overflow metabolism is an undesirable characteristic of aerobic cultures of <it>Saccharomyces cerevisiae </it>during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L) initial sugar concentrations. In this study, a <it>S. cerevisiae </it>strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H<sup>+ </sup>symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures.</p> <p>Results</p> <p>We have deleted from the genome of a <it>S. cerevisiae </it>strain lacking invertase the high-affinity sucrose-H<sup>+ </sup>symporter encoded by the <it>AGT1 </it>gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H<sup>+ </sup>symport activity mediated by the <it>MALx1 </it>maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source.</p> <p>Conclusion</p> <p>Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a <it>S. cerevisiae </it>strain engineered in the sucrose uptake system. Such result was accomplished by effectively reducing sucrose uptake by the yeast cells, avoiding overflow metabolism, with the concomitant reduction in ethanol production. The use of this modified yeast strain in simpler batch culture mode can be a viable option to more complicated traditional sucrose-limited fed-batch cultures for biomass-directed processes of <it>S. cerevisiae</it>.</p