60 research outputs found

    The plug-based nanovolume Microcapillary Protein Crystallization System (MPCS)

    Get PDF
    The Microcapillary Protein Crystallization System (MPCS) is a new protein-crystallization technology used to generate nanolitre-sized crystallization experiments for crystal screening and optimization. Using the MPCS, diffraction-ready crystals were grown in the plastic MPCS CrystalCard and were used to solve the structure of methionine-R-sulfoxide reductase

    The plug-based nanovolume Microcapillary Protein Crystallization System (MPCS)

    Get PDF
    This is the published version. Copyright International Union of CrystallographyThe Microcapillary Protein Crystallization System (MPCS) embodies a new semi-automated plug-based crystallization technology which enables nanolitre-volume screening of crystallization conditions in a plasticware format that allows crystals to be easily removed for traditional cryoprotection and X-ray diffraction data collection. Protein crystals grown in these plastic devices can be directly subjected to in situ X-ray diffraction studies. The MPCS integrates the formulation of crystallization cocktails with the preparation of the crystallization experiments. Within microfluidic Teflon tubing or the microfluidic circuitry of a plastic CrystalCard, ~10-20 nl volume droplets are generated, each representing a microbatch-style crystallization experiment with a different chemical composition. The entire protein sample is utilized in crystallization experiments. Sparse-matrix screening and chemical gradient screening can be combined in one com­prehensive `hybrid' crystallization trial. The technology lends itself well to optimization by high-granularity gradient screening using optimization reagents such as precipitation agents, ligands or cryoprotectants

    Nanovolume optimization of protein crystal growth using the microcapillary protein crystallization system

    Get PDF
    The Microcapillary Protein Crystallization System (MPCS) is used to successfully optimize protein crystals from 28 out of 29 tested proteins. Six protein structures have been determined from diffraction-ready crystals grown inside and harvested directly from the MPCS CrystalCards, which are compatible with the recently commercialized and automated MPCS Plug Maker instrument

    An ensemble of structures of Burkholderia pseudomallei 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase

    Get PDF
    An ensemble of crystal structures are reported for 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase from B. pseudomallei. The structures include two vanadate complexes, revealing the structure of a close analogue of the transition state for phosphate transfer

    Biological and Structural Characterization of a Host-Adapting Amino Acid in Influenza Virus

    Get PDF
    Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of avian influenza A viruses to mammals. However, the recently emerged pandemic H1N1 viruses lack these amino acids. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of lysine at position 627 and confers efficient viral replication to pandemic H1N1 viruses in mammals. Moreover, a basic amino acid at position 591 of PB2 substantially increased the lethality of an avian H5N1 virus in mice. We also present the X-ray crystallographic structure of the C-terminus of a pandemic H1N1 virus PB2 protein. Arginine at position 591 fills the cleft found in H5N1 PB2 proteins in this area, resulting in differences in surface shape and charge for H1N1 PB2 proteins. These differences may affect the protein's interaction with viral and/or cellular factors, and hence its ability to support virus replication in mammals

    Probing conformational states of glutaryl-CoA dehydrogenase by fragment screening

    Get PDF
    The first crystal structure is reported of a glutaryl-CoA dehydrogenase in the apo state without flavin adenine dinucleotide cofactor bound. Additional structures with small molecules complexed in the catalytic active site were obtained by fragment-based screening

    Structure of the cystathionine γ-synthase MetB from Mycobacterium ulcerans

    Get PDF
    Cystathionine γ-synthase (CGS) is a transferase that catalyzes the reaction between O 4-succinyl-l-homoserine and l-cysteine to produce l-­cystathionine and succinate. The crystal structure of CGS from M. ulcerans is presented covalently linked to the cofactor pyridoxal phosphate (PLP). A second structure contains PLP as well as a highly ordered HEPES molecule in the active site acting as a pseudo-ligand. This is the first structure ever reported from the pathogen M. ulcerans

    BrabA.11339.a: anomalous diffraction and ligand binding guide towards the elucidation of the function of a ‘putative β-lactamase-like protein’ from Brucella melitensis

    Get PDF
    The structure of a β-lactamase-like protein from B. melitensis was solved independently using two data sets with anomalous signal. Anomalous Fourier maps could confirm the identity of two metal ions in the active site. AMP-bound and GMP-bound structures provide hints to the possible function of the protein
    corecore