151 research outputs found

    Second order ancillary: A differential view from continuity

    Full text link
    Second order approximate ancillaries have evolved as the primary ingredient for recent likelihood development in statistical inference. This uses quantile functions rather than the equivalent distribution functions, and the intrinsic ancillary contour is given explicitly as the plug-in estimate of the vector quantile function. The derivation uses a Taylor expansion of the full quantile function, and the linear term gives a tangent to the observed ancillary contour. For the scalar parameter case, there is a vector field that integrates to give the ancillary contours, but for the vector case, there are multiple vector fields and the Frobenius conditions for mutual consistency may not hold. We demonstrate, however, that the conditions hold in a restricted way and that this verifies the second order ancillary contours in moderate deviations. The methodology can generate an appropriate exact ancillary when such exists or an approximate ancillary for the numerical or Monte Carlo calculation of pp-values and confidence quantiles. Examples are given, including nonlinear regression and several enigmatic examples from the literature.Comment: Published in at http://dx.doi.org/10.3150/10-BEJ248 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Search Based Clustering for Protecting Software with Diversified Updates

    Get PDF
    Reverse engineering is usually the stepping stone of a variety of attacks aiming at identifying sensitive information (keys, credentials, data, algorithms) or vulnerabilities and flaws for broader exploitation. Software applications are usually deployed as identical binary code installed on millions of computers, enabling an adversary to develop a generic reverse-engineering strategy that, if working on one code instance, could be applied to crack all the other instances. A solution to mitigate this problem is represented by Software Diversity, which aims at creating several structurally different (but functionally equivalent) binary code versions out of the same source code, so that even if a successful attack can be elaborated for one version, it should not work on a diversified version. In this paper, we address the problem of maximizing software diversity from a search-based optimization point of view. The program to protect is subject to a catalogue of transformations to generate many candidate versions. The problem of selecting the subset of most diversified versions to be deployed is formulated as an optimisation problem, that we tackle with different search heuristics. We show the applicability of this approach on some popular Android apps

    New (e,2e) Studies of Atomic and Molecular Targets

    Get PDF
    We report new coplanar (e,2e) measurements characterised by large energy transfer and close to minimum momentum transfer from the projectile to the target. Ionisation of the two-electron targets He and H2 is investigated under these particular kinematics. The experimental data are compared with the predictions of the most elaborate theoretical models. The obtained good agreement motivated us to extend our research to the case of more complex targets such as Ar. Comparison with the most elaborate models in the case of multi-electron targets is excellent. Destructive and constructive interference effects in the case of H2 are observed and discussed

    Voltage-programmable liquid optical interface

    Get PDF
    Recently, there has been intense interest in photonic devices based on microfluidics, including displays and refractive tunable microlenses and optical beamsteerers, that work using the principle of electrowetting. Here, we report a novel approach to optical devices in which static wrinkles are produced at the surface of a thin film of oil as a result of dielectrophoretic forces. We have demonstrated this voltage-programmable surface wrinkling effect in periodic devices with pitch lengths of between 20 and 240 µm and with response times of less than 40 µs. By a careful choice of oils, it is possible to optimize either for high-amplitude sinusoidal wrinkles at micrometre-scale pitches or more complex non-sinusoidal profiles with higher Fourier components at longer pitches. This opens up the possibility of developing rapidly responsive voltage-programmable, polarization-insensitive transmission and reflection diffraction devices and arbitrary surface profile optical devices

    SARS-CoV-2 Breakthrough Infections: Incidence and Risk Factors in a Large European Multicentric Cohort of Health Workers.

    Get PDF
    Background: The research aimed to investigate the incidence of SARS-CoV-2 breakthrough infections and their determinants in a large European cohort of more than 60,000 health workers. Methods: A multicentric retrospective cohort study, involving 12 European centers, was carried out within the ORCHESTRA project, collecting data up to 18 November 2021 on fully vaccinated health workers. The cumulative incidence of SARS-CoV-2 breakthrough infections was investigated with its association with occupational and social-demographic characteristics (age, sex, job title, previous SARS-CoV-2 infection, antibody titer levels, and time from the vaccination course completion). Results: Among 64,172 health workers from 12 European health centers, 797 breakthrough infections were observed (cumulative incidence of 1.2%). The primary analysis using individual data on 8 out of 12 centers showed that age and previous infection significantly modified breakthrough infection rates. In the meta-analysis of aggregated data from all centers, previous SARS-CoV-2 infection and the standardized antibody titer were inversely related to the risk of breakthrough infection (p = 0.008 and p = 0.007, respectively). Conclusion: The inverse correlation of antibody titer with the risk of breakthrough infection supports the evidence that vaccination plays a primary role in infection prevention, especially in health workers. Cellular immunity, previous clinical conditions, and vaccination timing should be further investigated

    Control of a 3-RRR planar parallel robot using fractional order PID controller

    Get PDF
    3-RRR planar parallel robots are utilized for solving precise material-handling problems in industrial automation applications. Thus, robust and stable control is required to deliver high accuracy in comparison to the state of the art. The operation of the mechanism is achieved based on three revolute (3-RRR) joints which are geometrically designed using an open-loop spatial robotic platform. The inverse kinematic model of the system is derived and analyzed by using the geometric structure with three revolute joints. The main variables in our design are the platform base positions, the geometry of the joint angles, and links of the 3-RRR planar parallel robot. These variables are calculated based on Cayley-Menger determinants and bilateration to determine the final position of the platform when moving and placing objects. Additionally, a proposed fractional order proportional integral derivative (FOPID) is optimized using the bat optimization algorithm to control the path tracking of the center of the 3-RRR planar parallel robot. The design is compared with the state of the art and simulated using the Matlab environment to validate the effectiveness of the proposed controller. Furthermore, real-time implementation has been tested to prove that the design performance is practical
    corecore