167 research outputs found
Evaluating noninvasive markers of nonhuman primate immune activation and inflammation.
OBJECTIVES: Health, disease, and immune function are key areas of research in studies of ecology and evolution, but work on free-ranging primates has been inhibited by a lack of direct noninvasive measures of condition. Here, we evaluate the potential usefulness of noninvasive measurement of three biomarkers, the acute-phase proteins C-reactive protein (CRP) and haptoglobin, and neopterin, a by-product of macrophage activity. MATERIALS AND METHODS: We took advantage of veterinary checks on captive rhesus (24) and long-tailed (3) macaques at the German Primate Center (DPZ) to analyze serum marker measures, before measuring concentrations in feces and urine, and evaluating relationships between matched serum, urine, and fecal concentrations. In a second study, we monitored excretion of these markers in response to simian immunodeficiency virus (SIV) infection and surgical tissue trauma, undertaken for a separate study. RESULTS: We found that each biomarker could be measured in each matrix. Serum and urinary concentrations of neopterin were strongly and significantly correlated, but neither haptoglobin nor CRP concentrations in excreta proxied circulating serum concentrations. Our infection study confirmed that urinary neopterin, in particular, is a reliable marker of viral infection in macaques, but also indicated the potential of urinary and fecal CRP and haptoglobin as indicators of inflammation. DISCUSSION: We highlight the potential of noninvasive markers of immune function, especially of urinary neopterin, which correlates strongly with serum neopterin, and is highly responsive to infection. Am J Phys Anthropol 158:673-684, 2015. © 2015 Wiley Periodicals, Inc
Role of complement and antibodies in controlling infection with pathogenic simian immunodeficiency virus (SIV) in macaques vaccinated with replication-deficient viral vectors
<p>Abstract</p> <p>Background</p> <p>We investigated the interplay between complement and antibodies upon priming with single-cycle replicating viral vectors (SCIV) encoding SIV antigens combined with Adeno5-SIV or SCIV pseudotyped with murine leukemia virus envelope boosting strategies. The vaccine was applied via spray-immunization to the tonsils of rhesus macaques and compared with systemic regimens.</p> <p>Results</p> <p>Independent of the application regimen or route, viral loads were significantly reduced after challenge with SIVmac239 (p < 0.03) compared to controls. Considerable amounts of neutralizing antibodies were induced in systemic immunized monkeys. Most of the sera harvested during peak viremia exhibited a trend with an inverse correlation between complement C3-deposition on viral particles and plasma viral load within the different vaccination groups. In contrast, the amount of the observed complement-mediated lysis did not correlate with the reduction of SIV titres.</p> <p>Conclusion</p> <p>The heterologous prime-boost strategy with replication-deficient viral vectors administered exclusively via the tonsils did not induce any neutralizing antibodies before challenge. However, after challenge, comparable SIV-specific humoral immune responses were observed in all vaccinated animals. Immunization with single cycle immunodeficiency viruses mounts humoral immune responses comparable to live-attenuated immunodeficiency virus vaccines.</p
Limited susceptibility of rhesus macaques to a cowpox virus isolated from a lethal outbreak among New World monkeys
This study was undertaken to investigate the susceptibility of
rhesus monkeys to the calpox virus, an orthopoxvirus (OPXV) of the
Cowpox virus species (CPXV), which is uniformly lethal in common marmosets. Six rhesus monkeys were either intravenously (i.v.) or intranasally (i.n.) exposed to the virus. Monitoring of the macaques after viral exposure included physical examinations, the determination of viral load by real-time PCR and plaque assay, and the analysis of humoral responses. Two i.v. inoculated animals developed numerous classical pox lesions that started after inoculation at days 7 and 10. Both animals became viremic and seroconverted. They exhibited maximal numbers of lesions of approximately 50 and 140 by day 21. One animal completely recovered, while the other one suffered from a phlegmonous inflammation of a leg initially induced by a secondarily infected pox lesion and was euthanized for animal welfare reasons. In contrast to previous pathogenicity studies with the calpox virus in marmosets, none of the four animals inoculated intranasally with doses of the calpox virus exceeding those used in marmosets by orders of magnitude showed typical clinical symptoms. No viral DNA was detectable in the blood of those animals, but three animals seroconverted. In two of these three animals, infectious virus was sporadically isolated from saliva. This indicates that rhesus monkeys are less susceptible to calpox virus infection, which limits their use in further intervention studies with OPXV
Mucosal prior to systemic application of recombinant adenovirus boosting is more immunogenic than systemic application twice but confers similar protection against SIV-challenge in DNA vaccine-primed macaques
AbstractWe investigated the immunogenicity and efficacy of a bimodal prime/boost vaccine regimen given by various routes in the Simian immunodeficiency virus (SIV) rhesus monkey model for AIDS. Twelve animals were immunized with SIV DNA-vectors followed by the application of a recombinant adenovirus (rAd5) expressing the same genes either intramuscularly (i.m.) or by oropharyngeal spray. The second rAd5-application was given i.m. All vaccinees plus six controls were challenged orally with SIVmac239 12 weeks post-final immunization.Both immunization strategies induced strong SIV Gag-specific IFN-γ and T-cell proliferation responses and mediated a conservation of CD4+ memory T-cells and a reduction of viral load during peak viremia following infection. Interestingly, the mucosal group was superior to the systemic group regarding breadth and strength of SIV-specific T-cell responses and exhibited lower vector specific immune responses. Therefore, our data warrant the inclusion of mucosal vector application in a vaccination regimen which makes it less invasive and easier to apply
Identification and functional characterization of a novel Fc gamma-binding glycoprotein in Rhesus Cytomegalovirus
Receptors recognizing the Fc part of immunoglobulin G (FcγRs) are key determinants in antibody-mediated immune responses. Members of the Herpesviridae interfere with this immune regulatory network by expressing viral FcγRs (vFcγRs). Human cytomegalovirus (HCMV) encodes four distinct vFcγRs that differ with respect to their IgG-subtype specificity and their impact on antibody-mediated immune function in vitro The impact of vFcγRs on HCMV pathogenesis and immunomodulation in vivo is not known. The evolutionary closest animal model of HCMV is rhesus CMV (RhCMV) infection of rhesus macaques. To enable the characterization of vFcγR function in this model, we studied IgG binding by RhCMV. We show that lysates of RhCMV-infected cells contain an IgG-binding protein of 30kDa encoded by the gene Rh05 that is a predicted type I glycoprotein belonging to the RL11 gene family. Upon deletion of Rh05, IgG-Fc binding by RhCMV strain 68-1 is lost whereas ectopic expression of Rh05 results in IgG binding to transfected cells consistent with Rh05 being a vFcγR. Using a set of reporter cell lines stably expressing human and rhesus FcγRs we further demonstrate that Rh05 antagonizes host FcγR activation. Compared to Rh05-intact RhCMV, RhCMVΔRh05 showed an increased activation of host FcγR upon exposure of infected cells to IgG from RhCMV-seropositive animals suggesting that Rh05 protects infected cells from opsonization and IgG-dependent activation of host FcγRs. However, antagonizing host FcγR activation by Rh05 was not required for the establishment and maintenance of infection of RhCMV, even in a seropositive host, as shown by the induction of T cell responses to heterologous antigens expressed by RhCMV lacking the gene region encoding Rh05. In contrast to viral evasion of NK cells or T cell recognition, the evasion of antibody-mediated effects does not seem to be absolutely required for infection or re-infection. The identification of the first vFcγR that efficiently antagonizes host FcγR activation in the RhCMV genome will thus permit more detailed studies of this immunomodulatory mechanism in promoting viral dissemination in the presence of natural or vaccine-induced humoral immunity.IMPORTANCE Rhesus cytomegalovirus (RhCMV) offers a unique model for studying human cytomegalovirus (HCMV) pathogenesis and vaccine development. RhCMV infection of non-human primates greatly broadened the understanding of mechanisms by which CMVs evade or re-program T cell and NK cell responses in vivo. However, the role of humoral immunity and viral modulation of anti-CMV antibodies has not been studied in this model. There is evidence from in vitro studies that HCMVs can evade humoral immunity. By gene mapping and with the help of a novel cell-based reporter assay system we characterized the first RhCMV encoded IgG-Fcɣ binding glycoprotein as a potent antagonist of rhesus FcγR activation. We further demonstrate that, unlike evasion of T cell immunity, this viral Fcγ receptor is not required to overcome anti-CMV immunity to establish secondary infections. These findings enable more detailed studies of the in vivo consequences of CMV evasion from IgG responses in non-human primate models
Search for mixed-symmetry states in ²¹²Po
In this work we present an experiment dedicated to searching for quarupole- collective isovector valence-shell excitation — the states with so-called mixed proton-neutron symmetry (MSSs), in the nucleus ²¹²Po. The states of interest were populated and studied by an α-transfer reaction. The experiment provides indication for existence of one-phonon MSS in the nucleus ²¹²Po which is the first experimentally identified MSS in the region around double magic nucleus ²⁰⁸Pb
Synthetic Double-Stranded RNAs Are Adjuvants for the Induction of T Helper 1 and Humoral Immune Responses to Human Papillomavirus in Rhesus Macaques
Toll-like receptor (TLR) ligands are being considered as adjuvants for the induction of antigen-specific immune responses, as in the design of vaccines. Polyriboinosinic-polyribocytoidylic acid (poly I:C), a synthetic double-stranded RNA (dsRNA), is recognized by TLR3 and other intracellular receptors. Poly ICLC is a poly I:C analogue, which has been stabilized against the serum nucleases that are present in the plasma of primates. Poly I:C12U, another analogue, is less toxic but also less stable in vivo than poly I:C, and TLR3 is essential for its recognition. To study the effects of these compounds on the induction of protein-specific immune responses in an animal model relevant to humans, rhesus macaques were immunized subcutaneously (s.c.) with keyhole limpet hemocyanin (KLH) or human papillomavirus (HPV)16 capsomeres with or without dsRNA or a control adjuvant, the TLR9 ligand CpG-C. All dsRNA compounds served as adjuvants for KLH-specific cellular immune responses, with the highest proliferative responses being observed with 2 mg/animal poly ICLC (p = 0.002) or 6 mg/animal poly I:C12U (p = 0.001) when compared with immunization with KLH alone. Notably, poly ICLC—but not CpG-C given at the same dose—also helped to induce HPV16-specific Th1 immune responses while both adjuvants supported the induction of strong anti-HPV16 L1 antibody responses as determined by ELISA and neutralization assay. In contrast, control animals injected with HPV16 capsomeres alone did not develop substantial HPV16-specific immune responses. Injection of dsRNA led to increased numbers of cells producing the T cell–activating chemokines CXCL9 and CXCL10 as detected by in situ hybridization in draining lymph nodes 18 hours after injections, and to increased serum levels of CXCL10 (p = 0.01). This was paralleled by the reduced production of the homeostatic T cell–attracting chemokine CCL21. Thus, synthetic dsRNAs induce an innate chemokine response and act as adjuvants for virus-specific Th1 and humoral immune responses in nonhuman primates
Search formixed-symmetry states of nuclei in the vicinity of the double-magic nucleus 208Pb
In this work we present the results from two experiments dedicated to search for quadrupolecollective isovector valence-shell excitation, the states with so-called mixed proton-neutron symmetry (MSS), in nuclei around the doubly magic nucleus 208Pb. 212Po was studied in an α-transfer reaction. 204Hg was studied in an inverse kinematics Coulomb excitation reaction on a carbon target. Both experiments provide indications for existence of one-phonon MSSs. Those are the first experimentally identified MSSs in the mass A ≈ 208 region
Sorting Signals, N-Terminal Modifications and Abundance of the Chloroplast Proteome
Characterization of the chloroplast proteome is needed to understand the essential contribution of the chloroplast to plant growth and development. Here we present a large scale analysis by nanoLC-Q-TOF and nanoLC-LTQ-Orbitrap mass spectrometry (MS) of ten independent chloroplast preparations from Arabidopsis thaliana which unambiguously identified 1325 proteins. Novel proteins include various kinases and putative nucleotide binding proteins. Based on repeated and independent MS based protein identifications requiring multiple matched peptide sequences, as well as literature, 916 nuclear-encoded proteins were assigned with high confidence to the plastid, of which 86% had a predicted chloroplast transit peptide (cTP). The protein abundance of soluble stromal proteins was calculated from normalized spectral counts from LTQ-Obitrap analysis and was found to cover four orders of magnitude. Comparison to gel-based quantification demonstrates that ‘spectral counting’ can provide large scale protein quantification for Arabidopsis. This quantitative information was used to determine possible biases for protein targeting prediction by TargetP and also to understand the significance of protein contaminants. The abundance data for 550 stromal proteins was used to understand abundance of metabolic pathways and chloroplast processes. We highlight the abundance of 48 stromal proteins involved in post-translational proteome homeostasis (including aminopeptidases, proteases, deformylases, chaperones, protein sorting components) and discuss the biological implications. N-terminal modifications were identified for a subset of nuclear- and chloroplast-encoded proteins and a novel N-terminal acetylation motif was discovered. Analysis of cTPs and their cleavage sites of Arabidopsis chloroplast proteins, as well as their predicted rice homologues, identified new species-dependent features, which will facilitate improved subcellular localization prediction. No evidence was found for suggested targeting via the secretory system. This study provides the most comprehensive chloroplast proteome analysis to date and an expanded Plant Proteome Database (PPDB) in which all MS data are projected on identified gene models
- …