1,056 research outputs found

    Multiple-Use of Forestry in Switzerland

    Get PDF
    WHEN I was invited to write a short article on multiple use forestry in Switzerland, I was at first somewhat bewildered. The term multiple use forestry, as applied to the general policy of the administration of our National Forests, is not found in its equivalent, in any of the four official languages of Switzerland; German, French, Italian, or Romansh. This does not mean, however, that the principal of multiple use forestry is not recognized in Switzerland. On the contrary, multiple use of the forests rests on customs which date back to prehistoric times and is therefore much older than the concepts of forestry as restricted to wood production alone. It is, indeed, the recognition of the many benefits other than wood, derived from the forest, which have had a decisive influence on the formulation of forestry legislation and the development of Swiss forestry practices

    Contextualização da dependência química na adolescencia a partir das vivências em uma instituição psiquiátrica

    Get PDF
    TCC (graduação) - Universidade Federal de Santa Catarina, Centro Sócio Econômico, Curso de Serviço Social

    Investigation of the Lipid Binding Properties of the Marburg Virus Matrix Protein VP40

    Get PDF
    Marburg virus (MARV), which belongs to the virus family Filoviridae, causes hemorrhagic fever in humans and nonhuman primates that is often fatal. MARV is a lipid-enveloped virus that during the replication process extracts its lipid coat from the plasma membrane of the host cell it infects. MARV carries seven genes, one of which encodes its matrix protein VP40 (mVP40), which regulates the assembly and budding of the virions. Currently, little information is available on mVP40 lipid binding properties. Here, we have investigated the in vitro and cellular mechanisms by which mVP40 associates with lipid membranes. mVP40 associates with anionic membranes in a nonspecific manner that is dependent upon the anionic charge density of the membrane. These results are consistent with recent structural determination of mVP40, which elucidated an mVP40 dimer with a flat and extensive cationic lipid binding interface. IMPORTANCE Marburg virus (MARV) is a lipid-enveloped filamentous virus from the family Filoviridae. MARV was discovered in 1967, and yet little is known about how its seven genes are used to assemble and form a new viral particle in the host cell it infects. The MARV matrix protein VP40 (mVP40) underlies the inner leaflet of the virus and regulates budding from the host cell plasma membrane. In vitro and cellular assays in this study investigated the mechanism by which mVP40 associates with lipids. The results demonstrate that mVP40 interactions with lipid vesicles or the inner leaflet of the plasma membrane are electrostatic but nonspecific in nature and are dependent on the anionic charge density of the membrane surface. Small molecules that can disrupt lipid trafficking or reduce the anionic charge of the plasma membrane interface may be useful in inhibiting assembly and budding of MARV

    Using Surface Plasmon Resonance to Quantitatively Assess Lipid-Protein Interactions

    Get PDF
    Surface Plasmon Resonance (SPR) is a quantitative, label-free method for determining molecular interactions in real time. The technology involves fixing a ligand onto a senor chip, measuring a baseline resonance angle, and flowing an analyte in bulk solution over the fixed ligand to measure the subsequent change in resonance angle. The mass of analyte bound to fixed ligand is directly proportional to the resonance angle change and the system is sensitive enough to detect as little as picomolar amounts of analyte in the bulk solution. SPR can be used to determine both the specificity of molecular interactions and the kinetics and affinity of an interaction. This technique has been especially useful in measuring the affinities of lipid-binding proteins to intact liposomes of varying lipid compositions

    Cellular membranes and lipid-binding domains as attractive targets for drug development

    Get PDF
    Interdisciplinary research focused on biological membranes has revealed them as signaling and trafficking platforms for processes fundamental to life. Biomembranes harbor receptors, ion channels, lipid domains, lipid signals, and scaffolding complexes, which function to maintain cellular growth, metabolism, and homeostasis. Moreover, abnormalities in lipid metabolism attributed to genetic changes among other causes are often associated with diseases such as cancer, arthritis and diabetes. Thus, there is a need to comprehensively understand molecular events occurring within and on membranes as a means of grasping disease etiology and identifying viable targets for drug development. A rapidly expanding field in the last decade has centered on understanding membrane recruitment of peripheral proteins. This class of proteins reversibly interacts with specific lipids in a spatial and temporal fashion in crucial biological processes. Typically, recruitment of peripheral proteins to the different cellular sites is mediated by one or more modular lipid-binding domains through specific lipid recognition. Structural, computational, and experimental studies of these lipid-binding domains have demonstrated how they specifically recognize their cognate lipids and achieve subcellular localization. However, the mechanisms by which these modular domains and their host proteins are recruited to and interact with various cell membranes often vary drastically due to differences in lipid affinity, specificity, penetration as well as protein-protein and intramolecular interactions. As there is still a paucity of predictive data for peripheral protein function, these enzymes are often rigorously studied to characterize their lipid-dependent properties. This review summarizes recent progress in our understanding of how peripheral proteins are recruited to biomembranes and highlights avenues to exploit in drug development targeted at cellular membranes and/or lipid-binding proteins

    Variation in Genetic Structure and Dispersal of Juvenile Green Turtles

    Get PDF
    Sea turtles are long-lived, globally distributed animals with a complex life-history. Individuals from different populations often share the same foraging areas (mixed stock aggregations). Understanding patterns of dispersal and connectivity between reproductive populations and mixed stock aggregations is fundamental for the development of effective conservation plans. Recently, green sea turtle (Chelonia mydas) populations in several reproductive areas have increased, providing an opportunity to evaluate how demographic changes in reproductive areas impact dispersal to, and the composition of, mixed stock aggregations. In this dissertation, I evaluated how dispersal from reproductive populations in the Greater Caribbean to mixed stock aggregations may have changed over time (Chapter 2). I analyzed mitochondrial DNA haplotypes from samples collected from nesting females captured at Melbourne Beach, Florida, USA, and in-water juveniles from two mixed stock aggregations in central Florida (Indian River Lagoon and Trident Basin) over two time periods. Over a 15-year period there were small variations in the composition of the mixed stocks, without a clear relationship to the recent growth in reproductive populations. I developed a modification to the established many-to-many mixed stock model to use the distance between source populations and mixed stock aggregations to weight model estimates. In Chapter 3 I created a simulation to understand how sample size and the level of similarity in relation to haplotype frequency between source populations can impact mixed stock model estimates. I determined that a minimum of 150 samples from each mixed stock aggregation is required to accurately estimate contributions from source populations to mixed stock aggregations for most cases using data currently available in the literature. Improving the resolution of the genetic marker used (i.e., increasing the distinction of haplotype frequencies between source populations) can produce similar results using a smaller number of samples. Finally, in Chapter 4 I evaluated genetic structure of green turtle populations in the Greater Caribbean using a next-generation sequencing approach. I used the same sampling scheme as Chapter 2, with samples from a nesting beach (Melbourne Beach, FL) and two mixed stock aggregations (Indian River Lagoon and Trident Basin, Florida). I identified 4 distinct populations within the samples, and similar to the mtDNA assessment in Chapter 2, the genomic approach also showed small variations in the composition of mixed stock aggregations over a 15-year period. I used a coalescent model to evaluate how these populations diverged from one another, and found strong support for current gene flow among all 4 populations. Results from my analyses reiterate the complexity of sea turtle\u27s dispersal dynamics, and the level of connectivity among populations in the Greater Caribbean. Future studies using mixed stock analysis should consider sample size with more than 150 samples per mixed stock aggregation and the use of more refined genetic markers. Also, genomic assessments of across multiple reproductive aggregations are required for a deeper understanding of other aspects of their ecology

    Cellular and molecular interactions of phosphoinositides and peripheral proteins

    Get PDF
    Anionic lipids act as signals for the recruitment of proteins containing cationic clusters to biological membranes. A family of anionic lipids known as the phosphoinositides (PIPs) are low in abundance, yet play a critical role in recruitment of peripheral proteins to the membrane interface. PIPs are mono-, bis-, or trisphosphorylated derivatives of phosphatidylinositol (PI) yielding seven species with different structure and anionic charge. The differential spatial distribution and temporal appearance of PIPs is key to their role in communicating information to target proteins. Selective recognition of PIPs came into play with the discovery that the substrate of protein kinase C termed pleckstrin possessed the first PIP binding region termed the pleckstrin homology (PH) domain. Since the discovery of the PH domain, more than ten PIP binding domains have been identified including PH, ENTH, FYVE, PX, and C2 domains. Representative examples of each of these domains have been thoroughly characterized to understand how they coordinate PIP headgroups in membranes, translocate to specific membrane docking sites in the cell, and function to regulate the activity of their full-length proteins. In addition, a number of novel mechanisms of PIP-mediated membrane association have emerged, such as coincidence detection – specificity for two distinct lipid headgroups. Other PIP-binding domains may also harbor selectivity for a membrane physical property such as charge or membrane curvature. This review summarizes the current understanding of the cellular distribution of PIPs and their molecular interaction with peripheral proteins

    Notes and tips for improving quality of lipid-protein overlay assays

    Get PDF
    To reduce costs of lipid-binding assays, allow for multiple lipids to be screened for protein binding simultaneously, and to make lipid binding more user friendly, lipids have been dotted onto membranes to investigate lipid-protein interactions. These assays are similar to a western blot where the membrane is blocked, incubated with a protein of interest and detected using antibodies. Although the assay is inexpensive and straightforward, problems with promiscuous or poor binding, as well as insufficient blocking occur frequently. In this technical note, we share several specific improvements to ensure lipid-protein overlay assays are of high quality and contain proper controls

    Infecções hospitalares pós-operatórias.

    Get PDF
    Trabalho de Conclusão de Curso - Universidade Federal de Santa Catarina, Centro de Ciências da Saúde, Departamento de Clínica Cirúrgica, Curso de Medicina, Florianópolis, 198
    • …
    corecore