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Abstract

Interdisciplinary research focused on biological membranes has revealed them as signaling and 

trafficking platforms for processes fundamental to life. Biomembranes harbor receptors, ion 

channels, lipid domains, lipid signals, and scaffolding complexes, which function to maintain 

cellular growth, metabolism, and homeostasis. Moreover, abnormalities in lipid metabolism 

attributed to genetic changes among other causes are often associated with diseases such as cancer, 

arthritis and diabetes. Thus, there is a need to comprehensively understand molecular events 

occurring within and on membranes as a means of grasping disease etiology and identifying viable 

targets for drug development. A rapidly expanding field in the last decade has centered on 

understanding membrane recruitment of peripheral proteins. This class of proteins reversibly 

interacts with specific lipids in a spatial and temporal fashion in crucial biological processes. 

Typically, recruitment of peripheral proteins to the different cellular sites is mediated by one or 

more modular lipid-binding domains through specific lipid recognition. Structural, computational, 

and experimental studies of these lipid-binding domains have demonstrated how they specifically 

recognize their cognate lipids and achieve subcellular localization. However, the mechanisms by 

which these modular domains and their host proteins are recruited to and interact with various cell 

membranes often vary drastically due to differences in lipid affinity, specificity, penetration as well 

as protein-protein and intramolecular interactions. As there is still a paucity of predictive data for 

peripheral protein function, these enzymes are often rigorously studied to characterize their lipid-

dependent properties. This review summarizes recent progress in our understanding of how 

peripheral proteins are recruited to biomembranes and highlights avenues to exploit in drug 

development targeted at cellular membranes and/or lipid-binding proteins.
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1. INTRODUCTION

Biomembranes are a site for budding [1], tubulation [2–4], fission [5, 6], and fusion [5, 6], 

all essential for membrane trafficking and cell growth and differentiation. Interdisciplinary 

research during the last decade including: biophysics, bioinformatics, chemistry and more 

recently lipidomics [7–9] have increased the publicity of biomembranes. These fields of 

work have unveiled the expanding number of enzymes responsible for lipid metabolism and 

trafficking, which generate distinct lipid compositions of membrane organelles in a spatial 

and temporal manner. This allows peripheral proteins to transiently translocate to discrete 

sites in the cell to elicit their function. These reversible binding events are crucial to 

biological processes and can often be attributed to lipid-binding domains [10–13]. Although 

there are common mechanisms of lipid-dependent recruitment by these modular domains, 

the presence of specific lipid targets at distinct biological membranes [14, 15] coupled with 

variations in electrostatic and hydrophobic residues in and around the lipid-binding site leads 

to unique binding modes. These subtle differences in binding behaviors are a niche to be 

taken advantage of in drug design. To this end we review the general themes of lipid-binding 

domain behaviors at biomembranes and highlight differences within and among the classes 

as a strategy for designing agonist and/or antagonists of their cellular activity.

2. CELLULAR MEMBRANES

Peripheral proteins that target glycerophospholipids represent the majority of lipid binding 

discussed in this review. Glycerophospholipids are major structural components of 

eukaryotic membranes harboring a hydrophobic backbone of diacylglycerol (DAG). These 

include bulk lipids such as the zwitterionic phosphatdiylcholine (PC) and 

phosphatdiylethanolamine (PE) and the anionic lipid phosphatidylserine (PS) [16, 17]. The 

cylindrically shaped PC and conically shaped PE comprise ~ 60% of total lipid while PS 

makes up ~25% of the inner leaflet of the PM [18]. Thus, PS provides the inner leaflet of the 

PM with an anionic reservoir to target PS-binding proteins and also has been found in 

abundant concentrations on the cytoplasmic leaflet of endomembranes [19] where it can 

target proteins to those sites as well. Phosphatidylinositol is about 4% of cellular membrane 

phospholipid, and is the building block for the phosphorylated derivatives, the 

phosphoinositides (PIs). All together the PIs total ~ 1% [20, 21] of cellular lipids where 

some PIs levels are fairly stable (PI(3)P and PI(4,5)P2) and others are more dynamically 

regulated (PI(3,4)P2 and PI(3,4,5)P3) [21, 22]. Although recent evidence suggests there are 

constitutive pools of PI(3,4)P2 and PI(3,4,5)P3 in the PM [23] responsible for targeting their 

effectors. Nonetheless, these lipids play instrumental roles in recruiting peripheral proteins 

to different membranes due to differences in their spatial and temporal metabolism. The 

presence of one specific lipid (such as PI(3)P or PS) in a membrane organelle can be crucial 

to targeting the effector proteins where there is a complex array of electrostatic (both 

specific and nonspecific), hydrophobic, and H-bonding between the peripheral protein and 

the membrane [24]. Table 1 highlights the consensus cellular location of some of these lipids 

and includes proteins that recognize each target. Sphingolipids are a second class of 

structural lipids comprised of the hydrophobic backbone of ceramide [25] while sterols such 

as cholesterol make up non-polar components of cell membranes [26].
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Our understanding of the structure and function of cell membranes has grown considerably 

since the fluid mosaic model was presented by Singer and Nicolson in 1972 [27]. The lipid 

bilayer has a highly polarized structure that consists of a central hydrocarbon core and two 

flanking interfacial regions [28]. The combined hydrocarbon region is ~ 30 Å and can vary 

in acyl chain length and saturation influencing imbedded peripheral proteins and 

transmembrane (TM) proteins [29]. The combined interfacial regions have comparable 

width and are heterogeneous in terms of chemical composition and polarity due to a 

complex mixture of water, the polar portion of the acyl chains, lipid backbone phosphate 

groups, and lipid headgroups. The complex natures of the lipid bilayer as well as peripheral 

protein structure are critical factors that govern the kinetics and energetics of membrane 

interactions. For instance, the polarity profile in the interfacial region allows proteins with 

different characteristics to experience a range of membrane interactions such as ion-ion, ion-

dipole and van deer Waals forces [30]. Structural, experimental and computational data on 

lipid-binding proteins has lead to their arbitrary classification based upon their membrane 

location [10]. The S-type (surface) proteins are localized at the membrane surface (i.e., 

outside of the level of the backbone phosphate group) and interact pre- dominantly with the 

polar headgroups. For these proteins the predominant interaction between protein and lipid 

are ion- ion and ion-dipole interactions. I-type (interfacial) proteins interact with membranes 

through ion-dipole and H-bonding to penetrate into the level of the phosphate (i.e., 

interfacial region). H-type (hydrocarbon) proteins penetrate into the hydrocarbon core region 

of the lipid bilayer using aliphatic residues, which is predominated by van der Waals Forces 

and H-bonding. It is important to note both I- and H-type peripheral proteins can interact 

with both the polar head- groups and the interfacial region of the bilayer and often use long-

range electrostatics or an electrostatic switch mechanism to drive their localization [10, 24, 

31]. See Fig. (1A) for a depiction of proteins imbedded in a bilayer. This classification is a 

simple view of how peripheral proteins achieve localization to different regions of 

membranes, however, it can be useful as a first step in designing small molecule mimetics of 

lipid-binding proteins or lipid-binding inhibitors. These types of reagents would be useful to 

study and understand lipid binding and signaling or may serve as general inhibitors of 

binding for peripheral proteins localized to different regions of the membrane. In fact, this 

simplification has been employed to detect PS containing membranes using functional 

mimics of Annexin V [32, 33] and to target peptides to the interfacial region through ionic 

H-bonding [34].

Stepping beyond the above classification, biomembrane structure is highly dynamic with 

both the lateral and transmembrane (TM) distributions of membrane components being 

heterogeneous. The number of different molecular compounds in biomembranes may 

number several thousand but essentially polar lipids and proteins are the two primary groups 

of components. That being said, the three primary intermolecular association partners are: 

protein-protein, protein-lipid, and lipid-lipid. Thus, a tactful approach to understanding and 

targeting these interactions can lead to a generation of molecules to promote or antagonize 

these interactions. The rapidly advancing fields of proteomics [35] and lipidomics [7–9] 

should help discover and hypothesize means of targeting interactions in and on membranes 

in a therapeutic fashion. With this in mind, the below sections should serve as summary of 
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general mechanisms of lipid-binding as well as describe subtle differences in mechanisms 

that can be exploited in disrupting or inducing the lipid-binding.

3. LIPID BINDING PROTEINS

At least 11 lipid-binding domains have been identified to date, which participate in specific 

and nonspecific interactions with membranes that vary in properties such as affinity, 

membrane curvature recognition, and induction of membrane curvature changes [11]. These 

lipid-binding modules, often referred to as membrane-targeting domains, includes C1 [36, 

37], C2 [38], PH [39], FYVE [40], PX [40, 41], ENTH [2, 42, 43], ANTH [43], BAR [2–4], 

FERM [44], PDZ [45], and tubby domains [46]. In addition, some peripheral proteins do not 

harbor lipid-binding domains but instead utilize a part of their molecular surface (e.g., 

secretory phospholipase A2s) while others have covalently attached lipid anchors (e.g., Src 

and Ras proteins) that embed in the lipid bilayer providing a driving force for localization. 

Table 1 summarizes some of the common properties of these lipid-binding domains 

including potential targeting regions for small molecules as discussed later.

All intracellular membranes contain a varying degree of anionic lipids and a majority of 

peripheral proteins contain cationic surfaces, at least locally. Thus, spatial and temporal 

signals are crucial to regulating targeting of peripheral proteins to the right membrane at the 

right time. Spatial regulation can be mediated by degree of membrane curvature and inherent 

differences in bulk lipid compositions among membrane organelles. Temporal regulation can 

occur through metabolism of PIs and DAG on various membranes and the second messenger 

Ca2+, which is able to induce the lipid binding of many proteins. Moreover, many proteins 

are regulated in both a spatial and temporal fashion. For instance, proper targeting may 

require a certain degree of membrane curvature harboring a temporally regulated lipid. Thus, 

lipid specificity, affinity, membrane penetration behavior, as well as curvature sensing 

abilities have important functional consequences with regards to cellular localization and 

biological activity. There are a number of cases where abrogation of these properties is 

attributed to disease [47, 48] and therapeutic intervention may be invaluable at the level of 

protein-lipid interactions.

3.1. Electrostatics and General Binding

In protein-protein interactions the initial formation of nonspecific collisional complexes, 

driven by diffusion and electrostatic forces, is followed by the formation of tightly bound 

complexes, which are stabilized by specific interactions [49, 50]. For the ligand binding of 

human growth hormone receptor, attractive electrostatic forces were shown to enhance the 

second-order rate constant for association (ka), whereas specific interactions that stabilize 

tightly bound complexes primarily lowered the dissociation rate constant (kd) [49]. 

Likewise, electrostatic components have been shown to be essential to protein lipid 

interactions [51, 52] including nonspecific electrostatic interactions that are crucial to 

proteins such as MARCKS, K-Ras, and Src [53–55]. This was evident as reducing the 

electrostatics through mutations was able to abrogate the cellular activity of Src [56]. For 

most peripheral proteins both specific and nonspecific electrostatic interactions increase the 

ka of lipid-binding as observed for the promotion of the protein-protein complexes and many 
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peripheral proteins achieve the stable lipid-membrane complex through a combination of 

electrostatic, both specific and nonspecific, as well as hydrophobic interactions [10, 24]. In 

consonance with the protein-protein interactions, specific lipid binding and membrane 

penetration stabilize the complex by lowering the kd [10, 38].

A general schematic of lipid-protein interactions can be described taking into account the 

aforementioned synopsis of membranes and computational and experimental analysis that 

has demonstrated proteins bind to anionic membranes in a two-step mechanism. The initial 

formation of nonspecific collisional complexes, driven by diffusion and electrostatic forces, 

is followed by the formation of tightly bound complexes, which are stabilized by specific 

interactions and/or membrane penetration (Fig. (1B)). The long-range electrostatic 

interactions will increase the chance of protein/membrane association as well as influencing 

the protein orientation at or near the membrane surface. Once the protein nears the 

membrane interface, two short-range interactions occur: first, proteins and membranes begin 

to lose favorable interactions with the polar solvent (cytoplasm for instance). This is a 

repulsive force called desolvation [24]. Second, penetration of hydrophobic and aromatic 

residues into the membrane interface according to the interfacial hydrophobicity scale 

generated by Wimley and White [57] serve as promoters of membrane docking. Essentially, 

the initial membrane adsorption of peripheral proteins facilitates specific interactions with 

lipids by reducing the dimensionality of the space through which the protein interacts with 

its lipid ligand [58, 59]. A clear example of this has been shown for a number of PI-binding 

domains including: FYVE, PX, and ENTH domains. These domains have low affinity for 

membranes containing anionic lipids devoid of their cognate PI. However, upon appearance 

of the target ligand, the nonspecific electrostatic association is essential to forming the 

weakly bound complex that can undergo a two dimensional search for the PI. However, 

without PI bound these domains are unable to sufficiently penetrate the membrane due to a 

high penalty of desolvation [10]. The PI acts as an electrostatic switch when docking to the 

stereospecific site by reducing the desolvation penalty and inducing the membrane 

penetration.

The electrostatic switch induced by PIs has been preceded by other well-characterized 

mechanisms of change in electrostatic potential. For instance, protein phosphorylation can 

serve as an electrostatic switch. A well-known example is the dissociation of the MARCKS 

protein from the PM following phosphorylation of three serine residues [63]. This reduces 

its positive charge through an electrostatic switch mechanism [64]. Similarly, a calcium/

electrostatic switch was proposed for the Ca2+ binding C2 domains [65] interactions with 

acidic phospholipids. Subsequently, computational and experimental investigations 

expanded the number of C2 domains following this mechanism [66]. These domains have a 

large negative potential (Ca2+-coordinating Asp residues) surrounding the membrane 

binding loops providing a large desolvation penalty in the Ca2+-free state. This precludes the 

insertion of aliphatic residues into the membrane until Ca2+ docks to the C2 domain 

increasing its positive charge and decreasing the desolvation penalty of insertion. The unique 

composition of each peripheral protein and/or lipid-binding domain as well as the target 

membrane provide diverse abilities for protein’s to bind membranes with different 

specificities, affinities, orientations and more. The different properties of peripheral proteins 
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and membranes will be exploited in the following section as a means of understanding how 

different drug targets dock on lipid membranes and how understanding these properties can 

be used as a tool to design small molecules to interfere with or promote the lipid-dependent 

activation of peripheral proteins.

4. EXAMPLES OF LIPID-BINDING DOMAINS AS DRUG TARGETS

4.1. C1 Domain

The C1 domain (~50 amino acids) or DAG/phorbol ester binding domain, originally 

identified in protein kinase C (PKC) isozymes [67, 68] are present in multiple signaling 

families including kinases (PKC, protein kinase D (PKDs), diacylglycerol kinases (DGKs), 

c-Raf, Kinase Suppressor of Ras (KSR)) and non-kinases (Chimaerins, RasGRPs, RacGAPs, 

Vav, and Munc). The X-ray crystal structure of the PKC8 C1B domain-phorbol 13-acetate 

complex revealed how the C1 domain achieves the ligand selectivity with a polar binding 

pocket for DAG/phorbol ester where main chain peptide groups in the pocket form hydrogen 

bonds with polar moieties of the phorbol ester [69]. These domains are well conserved 

containing six Cys- and two His-residues that tightly bind two zinc ions for structural 

stability. Originally, it was thought DAG bound in the same mode as phorbol ester, however, 

minor variations in sequence homology are responsible for dramatic affects in affinity for 

DAG and phorbol ester including abrogation of binding to one ligand and nM affinity for the 

other [70]. The structural basis of differential DAG and phorbol ester affinities of these C1 

domains is not fully understood partially due to lack of structural information on DAG 

coordination, which may stem from the difficulty associated with purifying these small 

hydrophobic domains. In addition to binding to DAG/phorbol ester, the C1B domains of 

PKCδ and PKCε have been also reported to interact with ceramide and arachidonic acid [71, 

72], but their binding sites have not been located. Also, the PKC C1 domains have been 

shown to bind alcohols with high stereospecificity [73] via a non-DAG-binding site [74]. 

Each of these three sites may serve as a viable site for drug development targeted at C1 

domain containing proteins. In fact, a number of compounds have been developed for the 

DAG site so we refer you to the article by Peter Blumberg and colleagues who do an 

outstanding job of reviewing these molecules in this issue.

C1 domains play a crucial role in targeting PKC and other molecules from the cytosol to 

membranes (translocation) in a DAG or phorbol ester dependent fashion [75]. Studies on 

PKC have shown C1-lipid interactions activated by DAG and also the binding of phorbol 

ester and related ligands to PKC to be dependent on the presence of negatively charged 

phospholipids (phosphatidylserine) [76]. Based on this observation it is believed that ligand 

binding in C1 domains is highly co-operative with respect to phosphatidylserine in typical 

C1 domain containing proteins. NMR, biochemical and mutagenesis studies suggest a two 

step membrane-binding mechanism where positively charge residues (non-specific 

electrostatic interactions) near the DAG binding pocket position the C1 domain near the 

anionic phospholipids and in the second step, the hydrophobic residues in rim of ligand 

binding pocket facilitates the membrane penetration. Unlike the high penalty of desolvation 

associated with insertion of hydrophobic residues for many PI binding domains and the 

electrostatic switch induced by Ca2+ for many C2 domains, the C1 domain has a low penalty 
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of desolvation and can readily insert in the membrane in a DAG-independent fashion (See 

Fig. (2A)) [77, 78]. Since hydrophobic residues surrounding the DAG binding pocket are 

exposed, isolated C1 domains typically have a high tendency to aggregate in solution. Thus, 

the C1 domain in the full-length protein is expected to be buried in the inactive form of the 

enzyme and becomes accessible to DAG or phorbol esters only after an inter-domain 

conformational change [78–80]; in the case of PKCα, C1 domains are exposed upon Ca2+-

dependent, C2 domain-mediated membrane binding of the proteins [78, 81].

The surface plasmon resonance (SPR) measurements indicate that DAG binding increases 

the vesicle affinity (Ka) of the PKC C1 domains by more than two orders of magnitude 

mainly by reducing the kd [70, 80]. Membrane penetration studies of PKC C1 domains 

indicated that membrane penetration of the C1 domain is necessary for DAG binding [77, 

78], since the glycerol moiety of DAG is expected to be located deep within the interfacial 

region. The depth of membrane penetration by the C1 domain has not been quantitatively 

measured yet; however, from the NMR spectra of the PKCψ C1B domain interacting with 

lipid micelles [82] it is estimated to be at least 10 Å below the level of the lipid phosphate. 

With this in mind, there are a number of avenues to targeting C1 domains besides the ligand-

binding pocket. First, we can think of the C1 domain as participating in the following 

interactions: ion-ion, ion-dipole, van der Waals Forces, and H-bonding with specific ligand. 

Molecules targeted toward disrupting the electrostatic association, hydrophobic penetration 

or even the release of the C1 domain from the full-length protein molecular tether may serve 

as viable options in disrupting C1 lipid binding. C1 domains may need to be studied on a 

case-by-case basis to assess ligand selectivity, depth of membrane penetration, orientation at 

the membrane, intramolecular interactions, alcohol binding, ceramide binding, or 

arachidonic acid binding. These variations in C1 properties may serve as avenues to 

selectively target C1 domains in solution or in membranes and may help achieve better 

selectivity for compounds targeting the DAG binding pocket. As a perspective, Table 2 

outlines a number of C1 domains including their function and role they play in disease.

4.2. C2 Domain

The C2 domain (~130 residues) like the C1 domain was first identified as one of two 

conserved regulatory domains in PKC [67, 68]. Identification of the C2 domain in other 

proteins, such as synaptotagmins and group IVA cytosolic phospholipase A2 (cPLA2α), 

which also bind membranes in a Ca2+-dependent manner, led to the postulation that the C2 

domain is involved in Ca2+-dependent membrane binding. A large number of proteins 

containing the C2 domain have been identified since, and most of them are involved in 

signal transduction or membrane trafficking. The C2 domain represents the second most 

abundant lipid-binding domain behind the PH domain with at least 200 examples identified 

in the Pfam database. While most C2 domain proteins are peripheral and bind reversibly to 

membranes some C2 parent proteins are actually TM proteins involved in membrane 

trafficking. However, these C2 domains can also bind reversibly in a Ca2+-dependent fashion 

[83]. Recently, a number of TM proteins with multiple C2 domains have been identified but 

the roles of these C2 domains in the protein’s functions are still unknown [83].
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The lipid affinity as well as the Ca2+ affinity of the Ca2+-binding C2 domains can vary 

greatly and some C2 domains are even involved in protein-protein interactions or may play a 

structural role. Ca2+ can play three different roles in membrane binding of the C2 domain: 

an electrostatic switch, a Ca2+-bridge, or inducing of intra- or interdomain conformational 

changes, which in turn trigger lipid binding. On the basis of the diverse Ca2+ affinity of C2 

domains, peripheral proteins may be activated in a temporal manner depending upon the 

extent of the Ca2+ oscillations and their intensities. In other words, does their membrane 

association and dissociation distinctly follow the cellular Ca2+ oscillations under 

physiological conditions? While it’s been shown enzymes such as PKC follow the Ca2+ 

spikes [84], the disparate targeting of C2 domains under the same cellular conditions are yet 

to be rigorously measured. A significant number of C2 domains with little to no Ca2+ 

affinity have also been identified. Some of these Ca2+-independent C2 domains have been 

reported to bind the membrane or other proteins but most of them have not yet been 

characterized. The general mechanism of how a number of C2 domains associate with 

membranes in a Ca2+-dependent fashion is well established [85, 86]. However, physiological 

functions and Ca2+- and membrane-binding properties of a large portion of C2 domains still 

remain unknown. Structural studies have shown that C2 domains have a common fold of 

conserved eight-stranded antiparallel β-sandwich connected by surface loops [87, 88]. The 

disparity in C2 domain targeting arises in the surface loops, which are variable in amino acid 

sequence and conformation and most often involved in lipid binding. Also of functional 

consequences is a cationic patch in the concave face of the β-sandwich termed the cationic 

β-groove, which varies in size and electrostatics among C2 domain [38]. In support of this 

observation, cationic β–grooves have been shown to bind PIs including PI(4,5)P2 as well as 

ceramide-1-phosphate (C1P) [89, 90]. Thus, many C2 domains are able to coordinate 

multiple lipids in both a Ca2+-dependent or independent fashion. The preliminary data 

available on the multiple lipid recognition mode of C2 domains suggests C2 domains may 

be multiply regulated by different lipids and Ca2+ signals and in some cases may require 

coincidence detection (e.g., interaction with multiple lipid targets) to achieve high affinity 

and cellular localization.

Most lipid binding domains achieve lipid specificity through a specific lipid-binding site 

formed within a pocket (e.g., C1, PH, PX, and FYVE domains) or with juxtaposed surface 

cationic residues (e.g., ANTH domain). C2 domains are unique among lipid-binding 

domains in that they have neither a well-defined lipid-binding pocket nor a conserved 

cationic patch. The aforementioned sequence variation in the surface loops as well as the 

cationic β-groove leads to highly variable and relatively low lipid selectivity for some C2 

domains and high affinity and specificity for others. Moreover, C2 domains can show 

different lipid selectivity as a function of Ca2+ concentration because the relative 

contribution of two lipid binding sites can vary as the β-groove ligand may lower the Ca2+ 

requirement for lipid docking acting as an electrostatic switch in a similar mode to Ca2+ 

[Bhardwaj, N., Vora, M., Chalfant, C.E., Lu, H. and Stahelin, R.V., unpublished data]. A 

majority of Ca2+-dependent C2 domains harbor cationic residues in the Ca2+-binding loops 

and bind anionic lipids significantly better than zwitterionic ones. Some of these C2 domains 

bind anionic phospholipids through non-specific electrostatic interactions while others can 

stereospecifically recognize a lipid headgroup such as PS. For PS coordination, the C2 

Sudhahar et al. Page 8

Curr Drug Targets. Author manuscript; available in PMC 2018 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



domains of PKCα [86, 91] and phospholipase C31 (PLC31) [92] harbor residues in the 

Ca2+-binding loops that can specifically recognize the serine headgroup of PS. C2 domains 

with aromatic and aliphatic residues in the Ca2+-binding loops are able to associate strongly 

with zwitterionic lipids such as phosphatidylcholine (PC) where they achieve deep 

hydrocarbon penetration following Ca2+ coordination [86, 93]. The cationic β-groove was 

first shown to interact with inositolpolyphosphates for the C2B domains of synaptotagmin II 

and IV [94, 95]. Thereafter, the C2B domains of synaptotagmin I [96] and II [97] were 

shown to bind bis- and tris-phosphoinositides in a Ca2+-independent fashion. These first 

examples of cationic β-grooves do not have high lipid specificity but play a key role in the 

vesicle fusion activity of host proteins. The role of the cationic β-grooves have been best 

characterized for PKCα [90] and cPLA2α [89]. PKCα has been reported to bind PIs 

including PtdIns(4,5)P2 with highest affinity [90]. This binding is attributed to four lysine 

residues in the β-groove, which at first glance don’t seem to be enough to select 

PtdIns(4,5)P2 over PI(3,4)P2, PI(3,4,5)P3 or other PIs. In fact, we performed experimental 

and computational investigation of the PKCα-C2 under various conditions and found that PS 

and Ca2+ are prerequisite for the PI binding, which augments the PS binding by increasing 

the membrane residence time [Manna, D., Bhardwaj, N., Vora, M., Stahelin, R.V., Lu, H. 
and Cho, W., J. Biol. Chem. 2008]. cPLA2α displays clear selectivity in its β-groove 

coordination of the sphingolipid C1P [89]. C1P is not only able to augment PC binding by 

increasing membrane residence time but it can increase affinity for membranes at lower 

Ca2+ levels as C1P acts as an electrostatic compensator for Ca2+ (See Fig. (2B)) [Bhardwaj, 
N., Vora, M., Chalfant, C.E., Lu, H. and Stahelin, R.V., submitted]. These examples of β-

groove binding by C2 domains should not only serve to understand the role of all β-grooves 

in C2 domains but may also be a site of therapeutic intervention when the β-groove is 

required for coincidence detection or cellular activity. The disparate roles of this site in C2 

domains may also serve as a better target than the more conserved Ca2+-binding sites and 

surface loop regions. Table 3 serves as insight into a number of C2 domain containing 

proteins with known cellular functions and importance in disease.

4.3. PH Domain

The PH domain is composed of ~ 100 amino acids and is one of the most common domains 

in the human proteome and the most abundance lipid-binding domain with >225 examples 

identified [39]. While it is the most abundant lipid-binding domain in sheer numbers only 

about 10% of PH domains studied bind PIs with high to moderate affinity. The other 90% 

bind with low affinity, bind in conjunction with other ligands, such as G-proteins, or their 

function is simply unknown. Lemmon and Ferguson have proposed that some of these PH 

domains, such as dynamins, increase their phosphoinositide affinity through oligomerization 

in host proteins [98, 99]. PH domains can be classified as either S-or I-type proteins as they 

lack a critical number of hydrophobic residues to achieve deep membrane penetration. 

Unlike other H- and I-type phosphoinositide-binding domains, such as FYVE, PX and 

ENTH domains, PH domains do not typically harbor as many aliphatic or aromatic residues 

around the PI-binding site. The membrane binding of PH domains then is initially driven by 

non-specific electrostatic interactions, which is followed by specific PI binding [100] to 

increase the membrane residence time. A few recent reports have demonstrated some PH 

domains anchor to the membrane through aliphatic residues around the PI-binding site [101–
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104]. Moreover, a subset of PH domains may be targeted to the membrane under acidic 

conditions due to the protonation of a key His residue in the binding crevice [104]. Taken 

together, these data underscore the distinct mechanisms targeting PH domains to 

membranes.

Of the seven PIs in cells, the PH domain binds specifically to PI(3,4,5)P3, PI(4,5)P2, or 

PI(3,4)P2 [39]. Reports of binding PI(3)P [105] and PI(4)P [106] are well documented for 

PH domains but the origin and reliability of this specificity is still controversial. For most of 

the highly specific PH domains, the vicinal positioning of two phosphate groups is thought 

to be crucial in the affinity of the PH domain for their cognate ligand as the PH domain does 

not bind to PIs lacking vicinal phosphates. Affinity of the PH domain for its specific PI is 

mediated mainly through interactions with conserved basic residues in the conserved β-

loops of the domain. The majority of PH domains have a conserved basic motif (K-Xn-

(K/R)-X-R) in which the basic lysines and arginines play an important role forming 

hydrogen bonds with the head group of the PI. Other basic residues, located within the 

domain or closely surrounding it vary from protein to protein, provide a stronger binding 

affinity and create a unique binding pocket. Some PH domains are mediated by the PI 

interaction and the binding of a G-protein to a second site in the PH domain [107]. The 

twofold binding of these ligands is necessary for a strong interaction, as without the G-

protein, the PH domain interacts weakly with membrane. Finally, two distinct members of 

the PH domain family (TIAM1 and ARHGAP9) [108] were recently discovered as they bind 

membranes through a site on the opposite side of the β1–β2 loop suggesting there are still 

novel PH domains to be discovered within the genome. A number of PH domain containing 

proteins are important drug targets. For instance, mutations in the BTK PH domains that 

abrogate P(3,4,5)P3 binding cause a disease characterized by inability to produce mature B 

lymphocytes [47] while mutations in the PH domain of PKB that induce constitutive 

membrane docking cause cancer [48]. Molecules geared toward promoting or inhibiting PH 

domain activity could provide therapeutic value in these diseases. Of course, careful 

consideration to the reversibility (on/off) of the binding must be taken into consideration 

where understanding lipid specificity, affinity, membrane penetration and coincidence 

detection (PH-protein and PH-lipid) are of utmost importance.

5. SUMMARY AND CONCLUSIONS

Lipid-protein interactions play important roles in the regulation of many cellular processes, 

including cell signaling and membrane trafficking [10]. When these interactions are 

abolished or promoted in a constitutive manner a number of life-threatening diseases can 

occur. Therapeutics aimed at the protein-lipid interface could serve as an invaluable tool for 

achieving high selectivity among targets achieving efficacy in abolishing the lipid-dependent 

activation of the drug target. However, designing small molecule inhibitors of lipid-binding 

proteins is a challenging task, in part because the driving forces of protein-lipid association 

are a composite of many chemical interactions. Electrostatic forces, cation-n interactions, 

van der Waals forces, and hydrogen bonding all play a role in maintaining proper membrane 

function and in the association of proteins with biological membranes. We still have much to 

learn about the infusion of these forces into the processes of molecular design that will 

ultimately produce the compounds necessary to control biological events at the cell 
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membrane. However, progress in our understanding of the membrane binding mechanisms 

of peripheral proteins has been substantial over the past decade thanks to rapid progress in 

bioinformatics, computational biology, in vitro biophysical studies, structural biology, and 

microscopic cell imaging. Furthermore, the advent of proteomics [35] and lipidomics [7–9] 

has greatly increased our awareness of the large number of molecular targets in a cell 

membrane that have potential therapeutic value and should only increase our knowledge of 

targeting events in and on membranes. Thus, the future research on lipid-protein interactions 

will entail only more interdisciplinary comprehensive studies of both computational 

predictions and validations of these forecasts. The advent of better high throughput small 

molecule discovery and computational design should hasten delivery of the first generation 

of therapeutics. Recently, a proof of concept in silico structure-based virtual ligand screening 

assay identified compounds that could disrupt the lipid binding of a C2 domain [109]. The 

simplified view of the lipid-protein interactions within biological membranes presented here 

provides the basis of small molecule discovery and design to target different interactions at 

the three main regions of the biological membrane. Combining these concepts with ligand 

screening should provide the basis of selectivity among and within the lipid-binding 

domains.
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ABBREVIATIONS

C1P Ceramide-1-phosphate

cPLA2 Cytosolic phospholipase A2

DAG sn-1,2-Diacylglycerol

PA Phosphatidic acid

PC Phosphatidylcholine

PE Phosphatidylethanolamine

PI Phosphoinositide

PI(3)P Phosphatidylinositol-3-phosphate

PI(4)P Phosphatidylinositol-4-phosphate

PI(3,4)P2 Phosphatidylinositol-3,4-bisphosphate

PI(3,4,5)P3 Phosphatidylinositol-3,4,5-trisphosphate

PI(4,5)P2 Phosphatidylinositol-4,5-bisphosphate
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PKC Protein kinase C

PLCo1 Phospholipase Co1

PM Plasma membrane

PS Phosphatdiylserine

PTEN Phosphatase and tensin homolog

SPR Surface plasmon resonance
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Fig. 1. Lipid binding mechanisms of lipid-binding domains
(A) A schematic of a lipid monolayer is shown to depict the relative position of lipid-binding 

domains in membranes. S-type proteins shown in orange do not significantly penetrate 

membranes and interact primarily through electrostatics with the anionic membranes. H-type 

proteins shown in gray are able to penetrate into the hydrocarbon region of the bilayer due to 

exposed aliphatic and aromatic residues. These proteins also can interact with the interfacial 

region through electrostatics and H-bonding. I-type proteins partially penetrate the 

membrane at the interfacial phosphate region. These types of proteins generally harbor 

aromatic and sometimes hydrophobic residues to achieve this binding mode. Taking all three 

modes into consideration including the types of chemical interactions that occur at each site 

can serve as a building block for small molecule discovery in the field of lipid binding. (B) 

A general scheme of lipid binding by a peripheral protein is depicted. In this instance a PI 

binding domain associates weakly with anionic membranes through nonspecific electrostatic 

interactions. Upon binding the membrane its dimensionality is reduced as it searches for its 

cognate PI. The PI coordination to the binding site is responsible for inducing an 

electrostatic switch (reduction in the desolvation penalty) followed by insertion of aliphatic 

residues adjacent to the PI binding site. The combination of PI-binding and hydrophobic 
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insertion elongates the membrane residence time of the protein and in many cases is a mode 

of peripheral protein activation.
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Fig. 2. Lipid binding modes of C1 and C2 domains
(A) A C1 domain is shown coordinated to DAG. Positively charged residues are shown in 

blue, negatively charged residues in red, and all other residues in gray. Note the tip of C1 

domains harbor hydrophobic and aromatic residues just above the DAG binding pocket that 

penetrate into the membrane. Nonspecific electrostatic interactions are achieved through the 

ring of electrostatic residues that line the domain just below the penetrating region. It is 

surmised these residues are located at the membrane surface and interfacial region upon 

DAG coordination and may participate in elongating the membrane residence time along 

with DAG binding. A single Asp shown in red is important for intramolecular interactions 

within some PKC isoforms. This interaction keeps the C1 domain in a closed state prior to 

the translocation signal. We would like to thank Diana Murray for help in preparing this 

figure. (B) The C2 domain of cPLA2α is shown docked to a membrane of PC and C1P. PC 

molecules are shown in green and C1P in red. This C2 domain penetrates effectively into PC 

bilayers upon Ca2+-coordination as hydrophobic and aromatic residues shown in magenta 

are responsible for the deep penetration. C1P binds to an electrostatic cluster shown in blue 

with high specificity and increases the membrane residence time of the domain on the 

membrane surface. The C1P interaction is also able to act as an electrostatic switch in a 

similar manner to Ca2+ promoting the membrane docking of the domain. Lipid binding can 

be disrupted by inhibiting Ca2+ binding or hydrophobic penetration. Since the C2 domain 

can translocate to internal membranes in the absence of C1P, disruption of the C1P site may 

have special therapeutic potential in inflammatory states where C1P is produced at high 
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levels or under conditions where C1P is overproduced and Ca2+ levels are low. We would 

like to thank Hui Lu and Nitin Bhardwaj for help in preparing this figure.
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Table 1

Cellular Location of Lipids and their Cognate Ligand

Lipid Primary Cellular Location Lipid-Binding Domain Drug Target Sites

PS PM and endomembranes (cytosolic 
leaflet) C2

Ca2+-binding site

PS-binding site

interfacial penetration

PI(3)P endosomes FYVE, PX, PH (PEPP1)

PI(3)P coordination

nonspecific electrostatics

interfacial penetration

PI(4)P Golgi PX (Bem1p), PH (FAPP1), ENTH (EpsinR)
PI(4)P coordination

interfacial penetration

PI(3,4)P2 PM PH (Tapp1), PX (p47phox), ENTH (HIP1)

PI(3,4)P2 coordination

nonspecific electrostatics

interfacial penetration

PI(3,5)P2 late endosomes PH (centaurin β2), ENTH (Ent3p, Ent5p)

PI(3,5)P2 coordination

nonspecific electrostatics

interfacial penetration

PI(4,5)P2 PM PH, PX, ENTH, ANTH, C2

PI(4,5)P2 coordination

nonspecific electrostatics

interfacial/hydrocarbon penetration

PI(3,4,5)P3 PM PH, PX

PI(3,4,5)P3 coordination

nonspecific electrostatics

interfacial penetration

C1P Golgi C2 (cPLA2α)

C1P site

Ca2+-binding site

Hydrocarbon penetration
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Table 2

Summary of C1 Domain Containing Proteins, their Cellular Function and Relative Diseases

Family/Protein # of C1 
Domains

Protein Function Cellular Roles/ Functions Relative Diseases

PKCα, βI, βII, γ, 
δ, ε, η,θ 2

Protein kinase

Proliferation, differentiation, migration, neuronal 
signaling, impaired humoral response and cellular 
B cell response, ion channel conductance, smooth 

muscle contraction, transmitter/hormone 
exocytosis and protein secretion

cancer, cardiomyopathy, 
cardiac and lung disease, 

cerebral ischemic and 
reperfusion injury, delay in 
wound healing, diabetes, 

kidney disease,

PKCζ 1

PKCι/λ 1

PKD 1, 2, 3 2 Protein kinase
Cell proliferation, Protein transport from trans-

Golgi network to cell surface, cancer cell invasion 
of tissues

polycystic kidney disease, 
prostate cancer

DGKα, β, γ, δ, ε, 
η, ζ, ι 2

Lipid kinase
Involved in IL-2 production in T-lymphocytes, 

involved in the cellular signal transduction, 
phosphatidic acid turnover

cancer, retinal degeneration, 
epilepsy, hypertension, 

autoimmune diseaseDGKθ 3

RasGRP-1, -2, -3, 
-4 1 Ras-GEF

Transformation in fibroblasts and activation of 
ERK pathway, thymocyte differentiation and TCR 

signaling, Control of proliferation and 
transformation in fibroblasts, Control of 

proliferation, adhesion and transformation in 
myeloblasts, Neuronal differentiation of PC12 

cells

Leukemia

KSR-1, -2 1 Scaffold Positive regulator of Ras signaling inflammatory bowel disease, 
pancreatic cancer
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Table 3

Summary of some C2 Domain Containing Proteins with Known Function in Disease

Family/Protein # of C2
Domains

Protein Function Cellular Roles/Functions Relative Diseases

cPLA2-α, β, δ 1 Phospholipase cell signaling processes 
regulating the inflammatory 

response

Alzheimer’s disease, epilepsy, 
multiple sclerosis, ischemia, 
inflammatory disease, cancer 
and neural trauma, psoriasis

5-, 8R-, and 15-Lipoxygenase 1 Dioxygenation of fatty 
acids

metabolism of prostaglandins 
and leukotrienes, cancer cell 

proliferation and survival

cancer, asthma

Otoferlin 1 Membrane fusion protein Exocytosis deafness

Perforin 1 pore-forming protein Role in CD8 T-cell and NK 
cell function, immune 

response

neurological disease

Phosphatidylinositol 3-kinase 1 Protein & Lipid Kinase involved in different signaling 
pathways and controlling of 

key functions of the cell, 
growth and survival, aging, 

and malignant transformation.

cancer, Alzheimer’s disease

PLC-β-I, β-II, β-III, β-IV, γ́ -I, 
γ-II, δ-I, δ-II, δ -III, δ-IV

1 Phospholipase signal transduction processes: 
proliferation, differentiation, 

apoptosis, cytoskeleton 
remodeling, vesicular 

trafficking, ion channel 
conductance, endocrine 

function, and neuro-
transmission.

cancer, apoptosis, hormonal 
diseases, Alzheimer’s disease, 

creutzfeldt-jakob disease

PKCα, βI, βII, γ, δ, ε, η, θ 1 Protein kinase Proliferation, differentiation, 
migration, neuronal signaling, 

impaired humoral response 
and cellular B cell response, 

ion channel conductance, 
transmitter receptor function, 
smooth muscle contraction, 

transmitter/hormone 
exocytosis and protein 

secretion

apoptotic resistance, cancer, 
cardiomyopathy, cardiac and 

lung disease, cerebral ischemic 
and reperfusion injury, delay 
in wound healing, diabetes, 

kidney disease, neurode-
generative disease, learning 

and memory

PTEN 1 Phosphatase cell migration and adhesion, 
apoptosis

brain, breast, and prostate 
cancer, Cowden syndrome, 
Bannayan-Riley-Ruvalcaba 

syndrome, Proteus syndrome, 
and Proteus-like syndrome

Nedd4 1 Ubiquitin Ligases endocytosis, degradation of 
membrane proteins, control of 
cell growth and viral budding.

Hypertension, cancer, and 
defects in the immune system

Synaptotagmin I, II, III, IV, V, 
VI, VII, VIII, IX, X

2 Membrane Fusion Synaptic vesicle docking, 
fusion, and exocytosis

Juvenile Parkinson disease and 
Alzheimer’s disease

Tollip 1 toll interacting protein signaling Huntington disease
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