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ABSTRACT 

Sea turtles are long-lived, globally distributed animals with a complex life-history. Individuals 

from different populations often share the same foraging areas (mixed stock aggregations). 

Understanding patterns of dispersal and connectivity between reproductive populations and mixed 

stock aggregations is fundamental for the development of effective conservation plans. Recently, 

green sea turtle (Chelonia mydas) populations in several reproductive areas have increased, 

providing an opportunity to evaluate how demographic changes in reproductive areas impact 

dispersal to, and the composition of, mixed stock aggregations. In this dissertation, I evaluated 

how dispersal from reproductive populations in the Greater Caribbean to mixed stock aggregations 

may have changed over time (Chapter 2). I analyzed mitochondrial DNA haplotypes from samples 

collected from nesting females captured at Melbourne Beach, Florida, USA, and in-water juveniles 

from two mixed stock aggregations in central Florida (Indian River Lagoon and Trident Basin) 

over two time periods. Over a 15-year period there were small variations in the composition of the 

mixed stocks, without a clear relationship to the recent growth in reproductive populations. I 

developed a modification to the established “many-to-many” mixed stock model to use the 

distance between source populations and mixed stock aggregations to weight model estimates. In 

Chapter 3 I created a simulation to understand how sample size and the level of similarity in 

relation to haplotype frequency between source populations can impact mixed stock model 

estimates. I determined that a minimum of 150 samples from each mixed stock aggregation is 

required to accurately estimate contributions from source populations to mixed stock aggregations 

for most cases using data currently available in the literature. Improving the resolution of the 

genetic marker used (i.e., increasing the distinction of haplotype frequencies between source 
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populations) can produce similar results using a smaller number of samples. Finally, in Chapter 4 

I evaluated genetic structure of green turtle populations in the Greater Caribbean using a next-

generation sequencing approach. I used the same sampling scheme as Chapter 2, with samples 

from a nesting beach (Melbourne Beach, FL) and two mixed stock aggregations (Indian River 

Lagoon and Trident Basin, Florida). I identified 4 distinct populations within the samples, and 

similar to the mtDNA assessment in Chapter 2, the genomic approach also showed small variations 

in the composition of mixed stock aggregations over a 15-year period. I used a coalescent model 

to evaluate how these populations diverged from one another, and found strong support for current 

gene flow among all 4 populations. Results from my analyses reiterate the complexity of sea 

turtle’s dispersal dynamics, and the level of connectivity among populations in the Greater 

Caribbean. Future studies using mixed stock analysis should consider sample size with more than 

150 samples per mixed stock aggregation and the use of more refined genetic markers. Also, 

genomic assessments of across multiple reproductive aggregations are required for a deeper 

understanding of other aspects of their ecology.  
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CHAPTER 1: INTRODUCTION 

Dispersal is a fundamental part of many species’ life cycle. Some species of birds, for instance, 

have an extended parental care phase, with young individuals dispersing into new areas only after 

reaching a certain life or developmental-stage (Russell et al., 2004), while in other species, as sea 

turtles, juveniles may start dispersal after hatching from the eggs with no direct parental care 

involved (Santos et al., 2016). Dispersal into new areas and the distribution of individuals across 

a land- or seascape can be influenced by multiple features, and are dependent upon environmental 

and demographic parameters (Doligez et al., 2003; Engelbrecht et al., 2007; Leach et al., 2016). 

For migratory species, a combination of environmental factors can contribute to orientation; birds 

that can adjust their flight path based on wind direction and waves as landscape features 

(Richardson, 1990) or using magnetoreceptors on their retina (Mouritsen & Hore, 2012). Selection 

of a new habitat for dispersing individuals is critical for individuals survival, as it can impact food 

availability and have impacts on reproductive success and fitness (Wiklund & Kaitala, 1995) or 

predation avoidance (Lundvall et al., 1999). Understanding patterns of species’ dispersal is 

especially important for the conservation and recovery of endangered species. 

Post-dispersal habitats for migratory and widely distributed species are often composed of 

individuals from multiple populations, known as mixed stock aggregations (e.g., seabirds, (Young, 

2010); whales, (Brüniche-Olsen et al., 2018; Carroll et al., 2020); sea turtles, (Bowen et al., 1996; 

Phillips et al., 2022; Stahelin et al., 2022)). Connections between reproductive areas and habitats 

where individuals disperse to can be evaluated with the use of genetic markers (Pella & Masuda, 

2001). Haplotype frequencies vary between populations, and one can calculate probability of a 

group of individuals sampled at a given location belonging from a specific source population (Pella 
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& Masuda, 2001). Mixed stock analysis (MSA) is a method used to determine where individuals 

found in mixed stock aggregations originated from (Anderson et al., 2008; Bolker et al., 2007; 

Debevec, 2000; Neaves et al., 2005; Pella & Masuda, 2001). Mixed stock models can incorporate 

the size of each source population as a covariate to more accurately account for sampling error 

(Okuyama & Bolker, 2005). However, there is a data gap in the literature regarding how variation 

in population sizes can change the composition of these mixed stock aggregations. This is 

important because genetic diversity within and among populations contributes to the persistence 

of wild populations (Frankham, 2005). Gene flow between populations helps reduce inbreeding, 

which can have deleterious effects on populations and increase the risk of extinction (Frankel & 

Soulé, 1981). Population genomics is a powerful tool to evaluate species’ genetic parameters (Funk 

et al., 2019; Volk et al., 2021), and samples collected at mixed stock aggregations could be used 

as a way to evaluate genetic structure and gene flow between reproductive populations.  

Appropriate sample size is a fundamental requirement for reliable statistical analysis (Ioannidis, 

2005). Variability within datasets and sampling biases can easily skew results and hamper 

inferences regarding the study’s goal (Baker et al., 2009; Jenkins & Quintana-Ascencio, 2020). 

Although, in some cases, adequate sample sizes might be hard to obtain. Locations with limited or 

difficult access (see Jenkins & Quintana-Ascencio, 2020), attempting to sample species with low 

abundances (e.g., endangered species; (Storfer, 1996)), or even lack of funding (Button et al., 

2013) can reduce researchers’ capacity to collect enough samples. Sample size becomes especially 

important when trying to differentiate between greatly similar datasets. This is the case for several 

sea turtle mixed stock aggregations, in which haplotype frequencies between areas is very similar; 
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mixed stock models may have a reduced capacity to estimate the source populations of sampled 

individuals (Shamblin et al., 2017). 

Sea turtles are globally distributed in tropical, subtropical, and temperate areas (Bowen & Karl, 

2007). Extant species of sea turtles started differentiating nearly ~100 million years, with varying 

hypotheses on how these species colonized the different oceans (Jensen et al., 2019; Phillips et al., 

2022). Despite surviving multiple evolutionary pressures over time, all current species are facing 

some level of extinction risk, mostly caused by human pressures (Fuentes et al., 2016; Jensen et 

al., 2018; Lewison et al., 2014; Miller et al., 2019; Wallace et al., 2013). Genomic approaches can 

deepen our understanding of how these species are handling or responding to reduced population 

sizes or the impacts of recent population growth (Chaloupka et al., 2008; Marcovaldi & Chaloupka, 

2007; Mazaris et al., 2017; Seminoff et al., 2015), and provide a clearer picture of effective 

measurements or conservation strategies for the future. 

The green sea turtle (Chelonia mydas) is an ideal species to study some of the concerns highlighted 

above. Green turtles use mixed stock aggregations as foraging and developmental habitats during 

their entire life cycle (Bjorndal & Bolten, 2008; Phillips et al., 2022; Shamblin et al., 2018; Stahelin 

et al., 2022; van der Zee et al., 2019). Reproductive populations in many areas are experiencing an 

increased number of nests, which is an indication of population growth (Chaloupka et al., 2008; 

Seminoff et al., 2015). Temporal evaluation of genetic parameters at mixed stock aggregations can 

provide insights into the status of their genetic diversity and genetic structure between populations. 
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My dissertation aims to address questions regarding the impacts of recent population growth on 

the composition of green sea turtle mixed stock aggregations, and evaluate the sensitivity and 

efficacy of commonly used techniques used in mixed stock models for sea turtle studies. For that, 

in Chapter 2 I conduct a mixed stock analysis using samples collected at an important green turtle 

rookery in Melbourne Beach, Florida, USA, and two mixed stock aggregations in the east coast of 

central Florida, USA (Indian River Lagoon, and Trident Submarine Basin) during two sampling 

periods. I compare contribution estimates from source populations to mixed stock aggregations to 

recent variations in number of nests laid at reproductive sites. For this goal, I developed a 

modification to the standard many-to-many mixed stock model by incorporating distance between 

source populations (rookeries) and mixed stock aggregations to the model. In Chapter 3 I conduct 

a simulation to evaluate the effect of using finer resolution markers to differentiate nesting 

populations on mixed stock models, and the impact of sample size on mixed stock models 

accuracy. In Chapter 4 I use a genomic approach to compare the genetic structure between genetic 

clusters identified in two mixed stock aggregations in Florida (Indian River Lagoon and Trident 

Basin) and the reproductive population from Melbourne Beach. I also evaluate how genetic 

structure for these sites varied in response to population growth and use a coalescent model to 

understand patterns of gene flow, divergence of current populations in the Greater Caribbean, and 

effective population sizes. Finally, I make recommendations of best practices for future studies 

regarding methodological adjustments and statistical approaches that can improve both our 

ecological understanding of sea turtles biology and future conservation actions derived from such 

analyses.  
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CHAPTER 2: INCORPORATING DISTANCE METRICS AND 

TEMPORAL TRENDS TO REFINE MIXED STOCK ANALYSIS 

Publication note 

This chapter has been accepted for publication in the journal Scientific Reports. My co-authors and 

myself as lead author retain copyright to the work. 

Stahelin, G.D., Hoffman, E.A., Quintana-Ascencio, P.F., Reusche, M., Mansfield, K.L. (2022) 

Incorporating distance metrics and temporal trends to refine mixed stock analysis. Scientific 

Reports 12 (1): 20569. https://doi.org/10.1038/s41598-022-24279-2 

Abstract 

The distribution of marine organisms is shaped by geographic distance and oceanographic features 

like currents. Among migratory species, individuals from multiple populations may share feeding 

habitats seasonally or across life stages. Here, we introduce a modification for many-to-many 

mixed stock models to include distance between breeding and foraging sites as an ecological 

covariate and evaluate how the composition of green turtle, Chelonia mydas, juvenile mixed stock 

aggregations changed in response to population growth over time. Our modified many-to-many 

model is more informative and generally tightens credible intervals over models that do not 

incorporate distance. Moreover, we identified a decrease in genetic diversity in a Florida nesting 

site and two juvenile aggregations. Mixed stock aggregations in central Florida have changed from 

multiple sources to fewer dominant source populations over the past ~20 years. We demonstrate 

that shifts in contributions from source populations to mixed stock aggregations are likely 

associated with nesting population growth. Furthermore, our results highlight the importance of 
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long-term monitoring and the need for periodical reassessment of reproductive populations and 

juvenile aggregations. Understanding how mixed stock aggregations change over time and how 

different life stages are connected is fundamental for the development of successful conservation 

plans for imperiled species. 

Introduction 

Dispersal shapes species' distributions and genetic structure; organisms dispersing into new areas 

may select suitable habitats based on factors such as availability (MacPherson, 1998), temperature 

(Freitas et al., 2016), resources, and competition (Davoren et al., 2003; Michelot et al., 2017). 

Among mobile organisms, some have defined home ranges and low dispersal, such as the maned 

sloth (Bradypus torquatus)(Chiarello et al., 2004), while others, such as the saltwater crocodile 

(Crocodylus porosus), are distributed more broadly and travel hundreds of kilometers for food and 

reproduction (Fukuda et al., 2022). Particularly among migratory organisms, individuals 

originating from multiple populations may share the same habitat and resources (e.g., fishes 

(O’Leary et al., 2014), and whales (Brüniche-Olsen et al., 2018; Carroll et al., 2020)). These shared 

habitats can be occupied by individuals from different populations during a specific time of the 

year, as in gray whales (Eschrichtius robustus) that seasonally share foraging habitats in the Pacific 

Ocean (Brüniche-Olsen et al., 2018), or during multiple years as in juvenile sea turtle foraging 

aggregations (Bowen et al., 1996). 

In organisms for which different populations share a habitat, mixed stock analysis (MSA) is a 

useful technique to understand genetic connectivity between source populations and mixed stock 

aggregations (Paxton et al., 2013). There are different approaches for mixed stock calculations, 
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most commonly using maximum likelihood (Anderson et al., 2008; Debevec, 2000) or Bayesian 

inference (Bolker et al., 2007; Neaves et al., 2005; Pella & Masuda, 2001). In addition, there are 

models designed to use haploid or single-parent inherited markers (e.g., mitochondrial DNA 

[mtDNA]) (Bolker et al., 2003; Bolker et al., 2007; Okuyama & Bolker, 2005) and nuclear or 

diploid markers (e.g., microsatellites, allozymes, minisatellites, among others) (Anderson et al., 

2008; Debevec, 2000; Neaves et al., 2005). Regardless of the approach, such methods usually 

compare genetic marker frequencies from mixed stock aggregations to known reproductive 

populations to estimate contributions to mixed stocks (Pella & Masuda, 2001). For mtDNA and 

similar markers, Bolker et al. (2007) introduced a model that considers the contributions from all 

available source populations to multiple mixed stocks simultaneously (e.g., many-to-many 

models). Many-to-many models allow robust and more realistic estimates of source populations 

than previous models that only accepted one mixed stock aggregation as a possible destination 

(e.g., many-to-one models (Bolker et al., 2007; Pella & Masuda, 2001)). Despite the important 

methodological advancements introduced by Bolker et al. (2007), the many-to-many model 

introduced in the R package ‘mixstock’ was not designed to consider site-specific variables such 

as the distance between source and destination sites. Nishizawa et al. (2013) added a matrix of 

distances between source populations and mixed stocks as priors to the model as a means to 

account for distance in a many-to-many framework; however, it is unclear how their distance 

matrix is incorporated into the model. 

Understanding how demographic parameters and dispersal patterns impact mixed stock 

composition is fundamental for implementing conservation plans for endangered and threatened 

species, especially if such variables change over time. Under scenarios where individuals are free 
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and capable of moving in any direction, we would expect large source populations to contribute 

more individuals to mixed stocks than small populations. However, most organisms disperse 

between habitats according to biogeographical and resource constraints (Davoren et al., 2003; 

MacPherson, 1998; Michelot et al., 2017). Also, temporal changes in source population sizes and 

stochastic events altering dispersal patterns can hamper our ability to characterize source 

populations for mixed stocks (Pella & Masuda, 2001). A mixed stock model implemented by 

Okuyama and Bolker (2005) weights model contribution estimates based on the size of each source 

population. Mixed stock models often require robust sampling from all sites under evaluation to 

obtain reliable estimates (Bolker et al., 2003), leading to combined datasets from previously 

published studies, regardless of the time period when samples were collected (Bowen et al., 1996; 

Carroll et al., 2020; Naro-Maciel, Gaughran, et al., 2014; O’Leary et al., 2014; Proietti et al., 2012; 

Shamblin et al., 2017; van der Zee et al., 2019). A concern with such an approach is that source 

populations are not necessarily constant over time (Chaloupka et al., 2008; Seminoff et al., 2015), 

just as haplotype frequencies in mixed stock aggregations might fluctuate (Bjorndal & Bolten, 

2008). Furthermore, the distance traveled by individuals from source populations to foraging 

aggregations is, in general, an important variable impacting dispersal (Roland et al., 2000; 

Vanschoenwinkel et al., 2007), and is often not considered in mixed stock assessments (Bowen et 

al., 1996; Brüniche-Olsen et al., 2018; Carroll et al., 2020; O’Leary et al., 2014; Paxton et al., 

2013; Shamblin et al., 2012) (but see (Naro-Maciel et al., 2014; Nishizawa et al., 2013; Proietti et 

al., 2012)). Therefore, there is a need to evaluate the impact of temporal changes in reproductive 

population demographics on mixed stock aggregations and to develop models that can better 

account for the distance between breeding and mixed stock aggregations into many-to-many 

MSAs. 
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The green turtle (Chelonia mydas) is an ideal organism to evaluate how demographic variations 

and distance between source populations (rookeries) impact mixed stock aggregations. First, green 

turtle foraging aggregations are typically composed of individuals from multiple populations 

(Bjorndal & Bolten, 2008; Bolker et al., 2007; Bowen et al., 1996; Shamblin et al., 2012, 2017; 

van der Zee et al., 2019). Second, in the past two decades, the number of nests in several green 

turtle rookeries in the Greater Caribbean and the western North Atlantic have increased at different 

rates (Chaloupka et al., 2008; Seminoff et al., 2015). Recently, van der Zee et al. (van der Zee et 

al., 2019) suggested that changes in contributions observed in a juvenile mixed stock in Bonaire 

could be associated with a variation in the size of the source nesting populations. Third, green 

turtles leave nesting beaches as hatchlings and swim away from the coast to offshore habitats 

where they reside for a number of years (Witherington et al., 2012). Even though oceanic-stage 

green turtles are not complete passive drifters and may actively swim and orient (Putman & 

Mansfield, 2015), there is substantial evidence suggesting marine turtle juvenile dispersal is also 

influenced by oceanographic currents, especially during the first few years of their life cycle 

(Mansfield et al., 2021; Putman et al., 2020; Putman & Naro-Maciel, 2013) (but see (Naro-Maciel 

et al., 2017)). Therefore, we can approximate the distance traveled by individuals between 

rookeries and mixed stock areas by following the main marine currents connecting the different 

areas. Lastly, the east coast of central Florida, USA, hosts one of the largest nesting aggregations 

for green turtles in the western North Atlantic (Chaloupka et al., 2008) and several mixed stock 

aggregations (Ehrhart et al., 2007; Redfoot & Ehrhart, 2013). 

Here, we evaluate the impact of temporal changes in rookery sizes and in green turtle mixed stock 

aggregations in the Greater Caribbean and western North Atlantic while accounting for distance 
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traveled between rookeries and mixed stock aggregations. To achieve these goals, we (i) modify 

the many-to-many mixed stock model to weight estimates based on the distance between rookeries 

and mixed stocks, and use the modified model to (ii) evaluate how variations in rookery sizes 

impacted MSA estimates over a two-decade period, and (iii) assess how MSA estimates change in 

response to variation in mixed stock haplotype frequencies and rookery size over the same period. 

Methods 

Study site and data collection 

Adding to the available data on haplotype frequencies for rookeries and mixed stocks 

(Supplementary tables S1-S3), we collected data from nesting female green turtles in the Brevard 

County portion of the Archie Carr National Wildlife Refuge, in Melbourne Beach, Florida, USA 

(28.04° N, 80.55° W to 27.87° N, 80.45° W – hereafter referred to as “MB”) (Ehrhart et al., 2014). 

We sampled juveniles at two mixed stock foraging sites: the Indian River Lagoon about two 

kilometers south of the Sebastian Inlet (27.82° N, 80.43° W – “IRL”), and at Trident Basin at Port 

Canaveral (28.42° N, 80.59° W – “TRID”), both on the east coast of central Florida, USA (Ehrhart 

et al., 2007; Redfoot & Ehrhart, 2013). All specimens used in this study were collected in 

accordance with animal care and use protocols approved by the Institutional Animal Care and 

Usage Committee at the University of Central Florida (IACUC 2020-04, 2020-18, 2020-138, and 

their predecessors). Skin and blood samples collection were conducted under permits MTP-231, 

NMFS 19508, and their predecessors. 

We defined two sampling periods, “old” and “new”, within the rookery and mixed stock samples: 

for the rookery, samples collected before 2000 = MBold, and samples collected in 2016 to 2018 = 
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MBnew. At the mixed stock sites, samples from 2003 to 2005 = IRLold and TRIDold, while samples 

from 2016 to 2018 = IRLnew and TRIDnew. Nesting female samples were assigned to a sampling 

period based on their first encounter, while juvenile mixed stock samples were assigned to a 

sampling period if any of the capture dates occurred during the years examined in this study. We 

recorded the standard straight carapace length (SCL) from the nuchal notch to the tip of the longest 

pygal scute when possible (Bolten, 1999). We extracted DNA from either skin or blood samples. 

Skin samples were collected using a 4-mm biopsy punch and stored in 95% ethanol at room 

temperature. Blood samples were collected from the dorsal cervical sinus into vials with sodium 

or lithium heparin, centrifuged to separate plasma, and red blood cells were frozen at -20 °C. For 

most of the blood samples collected from nesting females before the year 2000, a subset of the 

whole blood was also stored at room temperature in lysis buffer (100 mM Tris-HCl, 100 mM 

EDTA, 10 mM NaCl, 1% SDS, pH 8.0) using a 1:10 ratio of blood to buffer (Bagley, 2003). 

Laboratory analyses 

We extracted genomic DNA using either a Qiagen DNeasy blood and tissue kit following the 

manufacturer’s protocol or a Serapure Bead method with adaptations (Faircloth & Glenn, 2016; 

Rohland & Reich, 2012). We used primers LCM15382 (Abreu-Grobois et al., 2006) and CM16437 

(Shamblin et al., 2012) to amplify an 829 bp fragment of the mitochondrial control region 

(mtDNA). We used 20 µL polymerase chain reactions with final concentrations of 20 mM Tris 

HCl pH 8.4, 50 mM KCl, 0.25 mM of each dNTP, 1.5 mM MgCl2, 0.5 µM of each primer, 1 unit 

of Taq DNA polymerase, approximately 10 ng of genomic DNA, and water. We set up thermal 

cyclers to the following conditions: 95°C for 5 min; 40 cycles of 95°C for 30 s, 57°C for 30 s, 

72°C for 80 s; and a final extension at 72°C for 10 min; holding at 10°C. Samples with haplotype 
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CM-A1.1 were screened at one additional locus using primers CM12751F and CM13064R 

following PCR and sequencing conditions described in Shamblin et al. (2017). We purified all 

PCR reactions using Exonuclease I (EN0581) and FastAP (EF0651) following the manufacturer’s 

protocol. Samples were sequenced in both directions through Sanger sequencing. 

Data analyses 

We edited, assembled, and aligned mtDNA sequences to reference haplotypes (829 bp) available 

from the Archie Carr Center for Sea Turtle Research database 

(https://accstr.ufl.edu/resources/mtdna-sequences/) using Geneious R8 (Kearse et al., 2012). We 

created a median-joining haplotype network using PopART v1.7 (Leigh & Bryant, 2015), and 

calculated pairwise fixation indexes (FST), nucleotide (π) and haplotype (h) diversities using 

Arlequin v3.5.2.2 (Excoffier & Lischer, 2010). We used FST thresholds proposed by Wright 

(Wright, 1978) to assess population differentiation. We compared genetic variation over time for 

each sampling site via analysis of molecular variance (AMOVA) with 10,000 permutations in 

Arlequin. 

Mixed Stock Analysis 

We modified the many-to-many mixed stock model, originally implemented in the R package 

‘mixstock’ (Bolker et al., 2007). The original model available in the ‘mixstock’ package accepts a 

covariate to weight estimates obtained from haplotype frequency data by the relative size of each 

rookery (Bolker et al., 2007; Okuyama & Bolker, 2005). Although rookery size is an important 

factor influencing contributions from rookeries to mixed stocks, the current model does not accept 

site-specific factors such as distance between rookery and mixed stock location, or main marine 

https://accstr.ufl.edu/resources/mtdna-sequences/
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currents in between. To date, researchers need to input a matrix of values as priors into the many-

to-many model in order to add the effect of distance on estimates (Nishizawa et al., 2013). Our 

assumption is that rookeries might have greater contributions to relatively closer mixed stocks than 

to distant ones. Similarly, dispersal from rookeries to some mixed stock aggregations can be 

facilitated by oceanographic conditions. Even though juveniles are capable of orienting and 

actively swimming in marine currents (Putman & Mansfield, 2015), there is a greater chance for 

individuals to disperse to areas closer to where currents initially lead them than to other locations. 

Following this rationale, we modified the many-to-many model to weight the expected 

contributions by the scaled inverse distance (P) between each source population and mixed stock 

pair. The model we introduce here is: 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ~ 𝑆𝑜𝑢𝑟𝑐𝑒𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 ∗  𝑆𝑜𝑢𝑟𝑐𝑒𝑆𝑖𝑧𝑒 ∗  𝑃 ( 1 ) 

where SourceContribution is the estimated contribution from each rookery based on haplotype 

frequencies, and SourceSize is the estimated size of each source population. The modified model 

differs from Bolker et al. (Bolker et al., 2007) only by the scaled inverse distance (P) matrix. The 

code and rationale for the base model with SourceContribution and SourceSize are described in 

Bolker et al. (2007) and Okuyama and Bolker (2005). See Supplementary Document S1 for details 

on our modifications. Here, we populated the matrix with values derived from the estimated 

inverse distances between each rookery and mixed stock by measuring the length of probable paths 

between sites using available marine currents as vectors for transport between rookeries and mixed 

stock aggregations (Figure 2.1; Supplementary Tables S4 and S5). Scaled estimates of effective 

inverse distance (P) between each pair of mixed stock (i) and rookery (j) were calculated by 
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𝑃𝑖𝑗 =  

1

𝐷𝑖𝑗

∑
1

𝐷𝑖𝑗
𝑛
𝑗=1

⁄   ( 2 ) 

where D is the estimated distance from the rookery j to the mixed stock i. Given that a variety of 

factors may influence the direction and intensity of marine currents (Hays, 2017), we considered 

two different scenarios (Scenarios 1 and 2) in which individuals may take different paths to move 

between sites (Figure 2.1 – our discussion focuses only on Scenario 1. See Supplementary Table 

S4 for distance scenario 2). Our goal was to introduce a tool to improve future mixed stock 

analysis, not necessarily to define dispersal patterns for green turtles. 
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Figure 2.1: Probable routes used by juvenile green turtles to estimate the relative distances between 

rookeries and foraging areas; general current direction indicated by gray arrows. Blue triangles are 

rookeries, and green squares are mixed stock aggregation areas. Samples from MB are part of the CEFL 

rookery. Rookeries: AVES = Aves Island, Venezuela; SURN = Matapica and Galibi, Suriname; TORT = 

Tortuguero, Costa Rica; MXQR = Quintana Roo, Mexico; MXCA = Campeche and Yucatán, Mexico; 

MXTV = Tamaulipas and Veracruz, Mexico; SWCB = Guanahacabibes Peninsula, Cuba; SOFL = South 

Florida, United States; CEFL = Central Florida, United States. Mixed stocks: BAR = multiple areas, 

Barbados; BON = Lac Bay, Bonaire; NIC = Northeast Nicaragua, Nicaragua; BAH = Southern Bahamas, 

The Bahamas; SWTX = Southwest Texas, United States; NWFL = Northwest Florida, United States; HISL 

= Hutchinson Island, United States; RSBI = Reef at Sebastian Inlet, United States; IRL = Indian River 

Lagoon, United States; TRID = Trident Basin, United States; CENC = Central North Carolina, United 

States. Map generated in ArcMap 10.8.1 (https://www.esri.com), and arrows and labels were added in 

Adobe Illustrator 24.3 (https://www.adobe.com). 

We used a short fragment of the mtDNA (491 bp) for our MSAs (Supplementary Tables S1-S3), 

which is contained within the longer (829 bp) fragment. We searched the literature for haplotype 

frequencies in other mixed stocks and rookeries within the western North Atlantic and Greater 

Caribbean (Figure 2.1, Supplementary Tables S1-S3). We removed from our final dataset 

haplotypes found in mixed stock aggregations but not yet described in rookeries (Bolker et al., 

https://www.esri.com/
https://www.adobe.com/
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2007), and considered only rookeries in the northwest Atlantic and the Greater Caribbean to reduce 

noise from unlikely contributors (Engstrom et al., 2002). Though mixed stock data published by 

van der Zee et al. (2019) uses a timeframe slightly different than the one from IRL and TRID, we 

included their data in our dataset evaluating variations in haplotype frequencies to assess possible 

variations in other sites as well. 

For rookery size we used a three-year average of the number of nests laid (Table 2.1), based on 

the best available data we had access to. We estimated rookery size for two time periods: historical 

(~late 1990s) and recent (early 2010s). Finally, we included only rookeries in the western North 

Atlantic and Greater Caribbean for which data on the annual number of nests were available for 

both time periods considered (Table 2.1). 
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Table 2.1: Number of green turtle nests (source size) by rookery used in mixed stock models, relative size 

(proportion) in relationship to other rookeries, and variation of relative size between the two time periods 

(historical and recent). See Figure 2.1 for site abbreviations. 

 Source size 

 

Proportion  

Rookeries 

Historical  

(period) 

Recent 

(period)  Historical Recent Variation 

CEFL 
1,353 

(1997-99)a 

10,129 

(2012-14)a 
 1.36% 5.00% ↑ 3.64% 

SOFL 
827 

(1997-99)a 

6,549 

(2012-14)a 
 0.83% 3.23% ↑ 2.40% 

MXQR 
1,039 

(1999-2001)b 

11,907 

(2012-14)b 
 1.05% 5.88% ↑ 4.83% 

MXCA 
636 

(1999-2001)52 

11,281 

(2012-14)52 
 0.64% 5.57% ↑ 4.93% 

MXTV 
528 

(1999-2001)c 

10,713 

(2012-14)c 
 0.53% 5.29% ↑ 4.76% 

TORT 
86,667 

(1997-99)d 

129,060 

(2012-14)d 
 87.30% 

63.72

% 
↓ -23.58% 

SWCB 
159 

(1997-99)e 

242 

(2010-12)e 
 0.16% 0.12% ↓ -0.04% 

SURN 
6,562 

(1987-89)f 

19,646 

(2008-10)f  6.61% 9.70% ↑ 3.09% 

AVES 
1,500 

(1990s)g 

3,000 

(2010s)g  1.51% 1.48% ↓ -0.03% 

a(Florida Fish and Wildlife Conservation Commission - Fish and Wildlife Research Institute, 2021); 
b(Cuevas Flores et al., 2019); c(Pineda & Rocha, 2016); d(Varela et al., 2015); e(Azanza Ricardo et al., 

2013); f(Seminoff et al., 2015); g(Nalovic et al., 2020). 

 

We ground-truthed our model to ensure that the modified model results were consistent with the 

original model in the ‘mixstock’ package when incorporating a matrix of ones (Supplementary 

Document S2). We also used a simulated dataset to compare the estimates from our modified 

model to the approach used by Nishizawa et al. (2013) and determine if results were similar. We 

compared estimates from the original many-to-many model (MSA1) to estimates from our 

modified model including a distance matrix (MSA2) to demonstrate how inclusion of a new 

covariate can impact MSA estimates. For the models described below (MSA3-MSA6) we 
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populated the distance matrix with values from distance scenario 1 (Supplementary Table S4). To 

evaluate how changes in rookery sizes impacted MSA estimates, we combined all available data 

for each mixed stock into a single dataset (Supplementary Table S2) and created one model for 

each period: MSA3 – “historical” source size, and MSA4 – “recent” source size. Finally, to assess 

how contributions from rookeries changed over time based on mixed stocks haplotype frequencies 

and rookery sizes, we also built two models: MSA5 – “old” sampling period and “historical” source 

size, and MSA6 – “new” sampling period and “recent” source size. We considered samples from 

mixed stock BON (van der Zee et al., 2019) to be from comparable timeframes (2006-07 and 2015-

16) to IRL and TRID. Therefore, we added haplotype frequencies from BON to our "old" and 

"new" sampling periods in MSA5 and MSA6, and used the same haplotypic data from MSA3/MSA4 

for all other mixed stocks (Supplementary Table S3). Even though the IRL, TRID, and BON are 

the only mixed stocks with data to answer our last goal, we included all other mixed stocks in 

models MSA5 and MSA6 to ensure estimates were more accurate. We used 3 chains for each model 

with a random starting point. We adjusted the number of iterations and burn-in period for models 

(Supplementary Table S6) to ensure chain convergence by checking the Gelman-Rubin shrink 

factor (<1.08). To determine evidence of changes between models, we compared estimates by 

subtracting the posterior distributions for each estimated parameter between two models (e.g., 

MSA3 vs MSA4). The resulting distribution was used in the Test of Practical Equivalence 

implemented in the R package ‘bayestestR’ (Makowski et al., 2019) against a null hypothesis (CI 

= 0.89, range = -0.05 to 0.05). In short, the Test of Practical Equivalence evaluates what proportion 

of the credible interval of the resulting distribution (i.e., 89% CI) that falls inside the range defined 

as the null (i.e., -0.05 to 0.05) (Makowski et al., 2019). We chose a credible interval of 89% based 

on small posterior distributions sample size (<10,000) (Kruschke, 2015; Makowski et al., 2019). 
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Finally, we used linear regressions to test if the mean estimates from models MSA3-MSA6 were 

correlated to the distance between rookeries and mixed stocks. 

Results 

Biometrics 

We sampled a total of 200 turtles among the three locations and two time periods (Table 2.2). The 

mean SCL of first capture for nesting females in MBold was 100.9 cm (SD 5.1, range 93.4 – 114.1) 

and for MBnew was 97.8 cm (4.7, 90.5 – 108.6). For mixed stock samples, the mean size of first 

capture at IRLold was 46.8 cm (10.8, 29.5 – 68.6) and for IRLnew 48.1 cm (8.4, 32.4 – 66.7), while 

TRIDold was 29.5 cm (2.9, 23.4 – 39.2) and TRIDnew was 30.9 cm (4.3, 23.7 – 43). 
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Table 2.2: Haplotypes identified using the 829 bp mitochondrial DNA fragment. MBold (nesting females 

before 2000), MBnew (nesting females between 2016-2018); IRLold and TRIDold (foraging sites between 

2003-2005); IRLnew and TRIDnew (foraging sites between 2016-2018). Grayed rows indicate sequencing 

of a diagnostic fragment to distinguish between variants of haplotype CM-A1.1. IRL = Indian River 

Lagoon; Trident = Trident Submarine Basin. *2 samples failed to amplify the diagnostic sequence for CM-

A1.1. 

 Adults  Juveniles 

Haplotype MBold MBnew  IRLold IRLnew  TRIDold TRIDnew 

CM-A1.1 11 9*  7 11  13 24 

CM-A1.1.1 1 1  6 8  6 21 

CM-A1.1.2 10 6  1 3  7 3 

CM-A1.2 5 1  4   2 1 

CM-A1.4       1 1 

CM-A2.1     1    

CM-A3.1 9 11  13 20  17 11 

CM-A5.1    1 2  1  

CM-A8.1    2 1    

CM-A13.1    3     

CM-A16.1    3     

CM-A18.1     1  1 1 

CM-A18.2       2  

CM-A26.1     1  2 1 

CM-A27.1     1    

CM-A28.1    1   2  

CM-A48.3 2        

Total 27 21  34 38  41 39 

 

Population structure 

We identified four different haplotypes in MB (Table 2.2, Supplementary Fig. S1), including two 

samples with CM-A48.3 in MBold. This is the first time CM-A48.3 has been identified at a nesting 

site. The short-fragment version of this variant (CM-A48) had previously only been found in Cuba 

(Ruiz-Urquiola et al., 2010). We identified haplotypes CM-A27.1 and CM-A28.1 for the first time 
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in a juvenile foraging site on the east coast of Florida. Haplotypes CM-A3.1 and CM-A1.1 were 

the most frequent both in adult (41.7% and 41.7%) and in-water samples (45.8% and 25.0% in 

IRL, and 35% and 46.3% at TRID) for both “old” and “new” sampling periods (Table 2.2, 

Supplementary Fig. S1). 

Results from AMOVAs to determine if genetic diversity changed over time per site indicate that 

most variation was observed within populations and not over time for all sites. However, we did 

find that among population variation was greater at the MB site, indicating greater change-over-

time than found at the in-water sites (Supplementary Table S7). Haplotype (h) and nucleotide (π) 

diversities decreased for all sites over time. In MB, h decreased from 0.709 (SD = 0.047) before 

year 2000 to 0.567 (0.056) in 2016-2018, and π decreased from 2.252x10-3 (1.482x10-3) to 

0.757x10-3 (0.693x10-3). For mixed stock aggregations, in the IRL h varied from 0.8 (0.049) in 

2003-2005 to 0.65 (0.063) in 2016-2018 and π from 3.526x10-3 (2.112x10-3) to 2.899x10-3 

(1.794x10-3), while in TRID h went from 0.734 (0.05) to 0.553 (0.068) and π from 2.451x10-3 

(1.566x10-3) to 1.13x10-3 (0.885x10-3). The TRID mixed stock saw the highest reduction in 

haplotype diversity (from 0.732 to 0.553). Despite variation in haplotype and nucleotide 

diversities, pairwise FST comparisons did not indicate significant variation within sites over time 

(Table 2.3). The only differences in FST were between IRLold and both MB sampling periods, 

between IRLnew and MBold, and between TRIDnew and both IRL sampling periods. We found no 

evidence of structuring between sampling timeframes for each site. For rookery data, we also 

grouped samples with previous studies for the models evaluating changes in haplotype frequencies 

(MB is part of the CEFL rookery - Supplementary Table S1). 
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Table 2.3: Pairwise distance between sampling sites. Cells in bold indicate moderate genetic 

differentiation (0.05 < FST < 0.15)(Wright, 1978). Cells below diagonal show pairwise FST values. Values 

above diagonal show estimated p-values obtained from bootstrapping after correcting for multiple 

comparisons. 

 MBold MBnew IRLold IRLnew TRIDold TRIDnew 

MBold - 0.710 0.075 0.084 0.710 0.710 

MBnew 0.046 - 0.495 1.000 1.000 0.710 

IRLold 0.064 0.056 - 0.930 0.710 0.091 

IRLnew 0.063 0.004 0.013 - 1.000 0.132 

TRIDold 0.022 -0.007 0.027 -0.004 - 0.930 

TRIDnew 0.033 0.040 0.077 0.047 0.011 - 

 

Distance matrix 

Comparing the estimates obtained using our modified model and the approach used by Nishizawa 

et al. (2013) we found that our modified model consistently provided estimates with narrower 

credible intervals than adding distances as priors (Supplementary Fig. S2). Regarding the inclusion 

of a distance matrix to a many-to-many approach, estimates from rookery SWCB to the TRID 

mixed stock and from MXQR, SURN, and AVES to both mixed stocks remained essentially the 

same between MSA1 and MSA2 (Figure 2.2). However, adding the distance matrix in MSA2 made 

the credible intervals wider from CEFL, MXCA, MXTV, TORT, and SWCB to the IRL mixed 

stock, and from MXCA and TORT to the TRID estimates. In contrast, credible intervals were 

narrower from SOFL to the IRL mixed stock, and from CEFL, SOFL, and MXTV to the IRL. We 

found a weak relationship between values populated into the distance matrix and rookeries 

contribution estimates for models MSA4-MSA6 (Supplementary Fig. S3). 
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Figure 2.2: Impact of incorporating a distance matrix into many-to-many mixed stock models. Solid points 

represent mean estimates and vertical bars 95% credible intervals. No Distance Matrix (MSA1) = standard 

many-to-many model from package ‘mixstock’; Distance Matrix (MSA2) = modified many-to-many model 

with a distance matrix. See Figure 2.1 for site abbreviations. 

Effect of rookery size on mixed stocks 

All rookeries showed an increase in the average number of nests per season from historical to 

recent time periods (Table 2.1). However, given the different rates of increase, the relative 

contribution from each rookery (the number of nests divided by the total number of nests in all 

rookeries for each time period) changed over time. For AVES and SWCB, their relative proportion 

remained virtually unchanged (~1.5% and ~0.14% respectively). On the other hand, TORT had 

the largest increase in absolute numbers (over 42,000 annually), but its proportion decreased from 

87.30% to 63.72%. For CEFL, SOFL, MWQR, MXCA, MXTV, and SURN there was an increase 

in their relative proportion at similar rates (3.09 – 4.93%). 
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We found little evidence of changes in contributions to mixed stocks as a response to changes in 

rookery sizes alone (MSA3 vs MSA4 – Figure 2.3). Some mixed stocks analyzed have a single 

main contributing source population: MXTV is the main contributor to TRID and SWTX, SURN 

is the main contributor to BAR, and TORT appears as the main contributor to BON, HISL, BAH, 

and NIC. Contributions to IRL, CENC, RSBI, and NWFL appear to come from multiple sources 

without a clear single origin. Considering the rookery-centric estimates (Supplementary Fig. S4), 

individuals from most rookeries disperse similarly among the mixed stocks analyzed (overall mean 

estimate = 8.33%, SD = 8.25%). Individuals from TORT disperse mainly to NIC, followed by 

other mixed stock(s) not present in this analysis (UNK). Main destinations for individuals 

originating from the SURN rookery were BAR, NIC, and UNK. For both TORT and SURN, there 

is great uncertainty regarding the main mixed stock destinations. Complete results for models 

using distance scenario 2 are available in Supplementary Tables S8-S9. 
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Figure 2.3: Mixed stock-centric estimates comparing different source sizes. Filled dots represent the mean 

estimate, and vertical bars 95% credible intervals. MSA3 = “historical” source size. MSA4 = “recent” source 

size. * = rookeries with evidence of a difference in contribution in response to source size variation. See 

Figure 2.1 for site abbreviations. 

Haplotype and source size variation 

For this objective, we present only the results for mixed stocks with data available for the two 

sampling periods and the corresponding rookery sizes: IRL, TRID, and BON (MSA5 and MSA6, 

Figure 2.4 – Supplementary Tables S3 and S10 for complete results). The impact of changes in 

source size on the broader mixed stock estimates was established in the previous section (models 

MSA3 and MSA4). For TRID, we found evidence of an increase in the proportion of individuals 

from MXTV, and for BON there was a decrease in contributions from SURN. Also, for the IRL 

mixed stock, recent years have narrower credible intervals and lower mean estimates for rookeries 
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CEFL, SOFL, MXQR, SWCB, SURN, and AVES, while wider credible intervals were observed 

for MXCA and TORT. For TRID, we observed the same pattern of narrower credible intervals for 

all rookeries except for MXTV. Finally, for BON, recent years appear with tighter credible 

intervals for SURN and AVES, while for CEFL, SOFL, MXQR, MXCA, MXTV, and TORT we 

see wider credible intervals (Figure 2.4). Source-centric estimates for MSA5 and MSA6 indicate 

no changes in destination of individuals from all rookeries over time (Supplementary Fig. S5). 

 

Figure 2.4: Mixed stock-centric estimates with different sampling events and varying source sizes. Circles 

represent the mean estimate, and vertical bars 95% credible intervals. MSA5 = “old” mixed stock sampling 

period and “historical” source size. MSA6 = “new” mixed stock sampling period and “recent” source size. 

* = rookeries with evidence of a difference in contribution in response to source size variation. See Figure 

2.1 for site abbreviations. 

Discussion 

Our study introduces an important advancement for mixed stock analysis: a more informative and 

ecologically meaningful model incorporating a matrix of site to site-specific weighted inverse 

distances. We demonstrate how demographic variations in source populations and temporal 
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changes in haplotype frequencies in mixed stocks aggregations can impact MSA estimates. Also, 

we show how understanding dispersal patterns and connectivity between sites is crucial for 

management of migratory organisms. Our analyses indicate how the stock composition of juvenile 

aggregations of green turtles in east central Florida have changed over a 13-year period, 

simultaneous to a population growth on several source nesting populations. Furthermore, we 

clearly demonstrate the importance of long-term monitoring and periodic reassessment of both 

breeding and juvenile aggregations. 

For the juvenile IRL and TRID mixed stocks, the mean SCL from individuals sampled in our study 

was comparable to the mean sizes previously reported for both sites (Long et al., 2021; Redfoot & 

Ehrhart, 2013). For the rookery MB, the mean size and observed reduction in mean SCL among 

nesting females are consistent with a trend recently described for this populations (Phillips et al., 

2021). The pairwise comparison between sites (Table 2.3) corroborates our decision to treat IRL 

and TRID as separate mixed stocks. Also, FST indicates a greater genetic differentiation between 

MB and the IRL mixed stock, suggesting it is not mostly composed of individuals from MB despite 

geographical proximity, supporting our assumption that the distance between MB and IRL is much 

greater than what a straight line between these sites suggests (Supplementary Tables S4-S5). 

Several green sea turtle nesting sites in the western North Atlantic and Greater Caribbean have 

increased in both estimated abundance and number of nests laid (Seminoff et al., 2015), including 

the MB nesting aggregation (Chaloupka et al., 2008). Female sea turtles are known for 

reproductive natal philopatric behavior (Bowen et al., 1996). Given that the genetic marker we 

used (mtDNA) is both haplotypic and maternally inherited, a reduction in haplotype diversity in 

reproductive populations would be expected given the reduced effective size associated with 
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mtDNA, especially for historically bottlenecked populations. Regarding in-water aggregations, the 

observed reductions in h and π could be a consequence of changes in the main contributors to each 

mixed stock (Figure 2.4), with a general homogenization of the genetic pool. Similarly, a recent 

study on a mixed stock in Lac Bay, Bonaire, found a reduction in nucleotide diversity but no clear 

change in haplotype diversity over 9 years (van der Zee et al., 2019). However, van der Zee et al. 

(2019) amplified only the short mtDNA fragment, which could reduce their ability to detect 

variations. Regardless, results from our analysis indicate a predominance of a single contributor in 

BON in recent years instead of two from the "old" sampling period (Figure 2.4), supporting the 

van der Zee et al. (2019) hypothesis of changes in contributors over time. Even though it is unlikely 

to be observed on all sites simultaneously, after splitting our dataset for IRL and TRID into two 

sampling periods, we cannot discard the possibility that these reductions are due to small sample 

sizes. The reduction in sample size for IRL, TRID, and BON mixed stocks in MSA5/MSA6 

compared to MSA3/MSA4 could help explain the increased uncertainty around the estimates 

(Figure 2.4). Additionally, we acknowledge that our results are a snapshot in time and encompass 

less than one generation-time for this species; undetected complex ecological processes might be 

underway (Bjorndal et al., 2005). Future studies with a larger sample size from a single mixed 

stock and time period could try to address this concern using a resampling approach (e.g., 

jackknife-based method) to identify how sampling might affect MSA estimates. 

We identified variations on the width of credible intervals between our modified model and the 

original model in the ‘mixstock’ package (MSA1 vs MSA2). Even though we did not specifically 

test possible causes for variation in credible intervals after the inclusion of the distance matrix, we 

suspect it could be related to values in the distance matrix that do not match estimates from 
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haplotype frequencies (e.g., haplotype frequencies indicate small contribution from one rookery 

while the value in the distance matrix suggest higher contribution from the same source). Mixed 

stocks and/or rookeries with small sample sizes could be more impacted by such variations. 

We found no clear evidence of changes in contributors to mixed stocks when considering variation 

in rookery size alone (MSA3 and MSA4; Figure 2.3). Previous studies report little or no difference 

in estimates when comparing models with rookery size versus models with an uninformative 

covariate (i.e., equal value to all rookeries) while using a many-to-one framework (Proietti et al., 

2012; Shamblin et al., 2017). This is not an unexpected result as MSA estimates are mostly derived 

from genetic markers (Pella & Masuda, 2001), and the weight provided by covariates might not 

be enough to change estimates. However, we found evidence of variations in contributions when 

the haplotypic variation was considered along with rookery size variation (MSA5 and MSA6; 

Figure 2.4). Though, we did not test a model with varying haplotype frequencies and constant 

rookery size, as rookery sizes did change over time this would be an unrealistic scenario and we 

could not tease these changes apart. Therefore, we cannot determine if the observed fluctuation in 

haplotype frequencies (and rookery contribution estimates) was caused by changes in the influx of 

individuals from source populations to mixed stocks or by variation in source population sizes 

because both possibilities are intrinsically dependent on one another. 

The main contributors to mixed stocks from models MSA3 and MSA4 were partially different from 

previous analyses in the Atlantic Ocean and Greater Caribbean (Bass et al., 1998, 2006; Bass & 

Witzell, 2000; Bolker et al., 2007; Foley et al., 2007; Lahanas et al., 1998; Luke et al., 2004; 

Monzón-Argüello et al., 2010; Naro-Maciel et al., 2012; van der Zee et al., 2019), which could be 
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explained by substantial differences between our dataset and the different datasets and models 

used by previous studies. However, results from MSA5 and MSA6 corroborate findings from 

studies that identified fluctuations in contributions over time in response to changes in haplotype 

frequencies in mixed stocks (Bjorndal & Bolten, 2008; van der Zee et al., 2019). An assumption 

of mixed stock models is that all source populations are represented and adequately sampled (Pella 

& Masuda, 2001) – an assumption that will rarely be met. Engstrom et al. (2002) suggest not 

including unlikely contributors to mixed stock models to reduce noise, a decision we also made. 

However, researchers may have different thresholds to define an unlikely contributor, therefore, 

this decision becomes arbitrary. Comparing estimates among studies is difficult as new areas are 

added and more samples are sequenced. Furthermore, our modified model uses effective distance 

to weight estimates; this adds an extra layer of differentiation among studies, making direct study 

comparisons even harder. Regardless of agreement (or lack of agreement) between our results and 

previous studies, we believe that future assessments can improve biological meaning if mixed 

stocks and rookeries are periodically reassessed for haplotype frequencies. 

An increase in juvenile abundance following reproductive population growth and increased 

number of nests laid is a reasonable expectation. This expectation depends on the fitness of 

reproductive individuals, the hatching success of the nests laid, and survival and recruitment rates 

for juveniles. However, Bjorndal et al. (2005) found no correlation between increased number of 

nests at Tortuguero, Costa Rica, the putative main stock of origin for the mixed stock, and 

variations in the abundance of green turtles at Union Creek, The Bahamas. One hypothesis was 

that Union Creek was near carrying capacity for green turtles, and abundance would remain stable 

over time (Bjorndal et al., 2005). Our models corroborate their findings, showing TORT as the 
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main contributor (Figure 2.3) despite the reduction in TORT’s size in relationship to the other 

source populations in the region (Table 2.1). The stability of contributions to BAH could be an 

indication that the carrying capacity hypothesis is still a valid option for Union Creek. Similarly, 

Long et al. (2021) attributed a decrease in green turtle abundance in the IRL mixed stock between 

2001 and 2018 to a general decrease in habitat quality, despite the increased abundance in 

rookeries. It is possible that juvenile abundance increased in other mixed stock aggregations and 

that the observations in the IRL and BAH mixed stocks (Bjorndal et al., 2005; Long et al., 2021) 

are isolated cases. However, a study with green turtles from MB identified a decrease in nesting 

females’ mean size and size at maturity over the past decades, especially after the late 1990s 

(Phillips et al., 2021). One of the explanations for a decrease in nesting female body size is reduced 

juvenile mass growth rate (Bjorndal et al., 2013), which, ultimately, could lead to overall reduced 

reproductive fitness in rookeries. At least for leatherback sea turtles (Dermochelys coriacea), 

reproductive fitness can be impacted by maternal health parameters (Perrault et al., 2012). 

Interestingly, these data are supported by our genetic analyses that found little change between in-

water sites over time, but greater change among time periods for the nesting beach site. 

Mixed stock analysis using either the number of nests or the number of nesting females as a proxy 

for source size should correct estimates by emergence success (total number of hatchlings emerged 

divided by the total number of hatched eggs in a clutch). Emergence success can vary among 

seasons, rookeries, species, and can be affected by maternal health and environmental factors 

(Montero et al., 2018; Perrault et al., 2012). To ensure future mixed stock analyses benefit from 

more informative rookery sizes, we urge researchers to report the number of nests, hatching 

success, and emerging success, as well as other basic reproductive parameters from nesting 
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populations. We second the call by Shamblin et al. (2014) for broad use of longer fragments of 

mtDNA in reassessments of rookeries that have been only evaluated using the short fragment, and 

especially, that new studies refrain from sequencing the short fragments only. The development of 

new diagnostic markers using whole mitogenomic sequences (Shamblin et al., 2012), or a 

combination of mtDNA with other markers (e.g., nuclear microsattelites), to increase 

discrimination between rookeries is essential for our understanding of sea turtle evolution and 

dispersal patterns. Future population and species assessments will benefit from better and more 

refined genetic information. 

Understanding dispersal and connectivity among habitats and across life stages is fundamental for 

species’ conservation. The main feature introduced by our modified model is the capacity for 

researchers to more easily consider variables that are specific to each pair of source populations 

and mixed stocks in a many-to-many framework. Prior to our modified model, studies 

incorporating particle dispersal probabilities or distance between sites often weighted MSA 

estimates using a many-to-one model framework because the probabilities from a source will differ 

to each mixed stock, and estimates from multiple mixed stock models need to be combined for a 

regional overview (Naro-Maciel et al., 2014; Proietti et al., 2012; Putman et al., 2020; Shamblin 

et al., 2017). Many-to-many models provide estimates with narrower credible intervals than many-

to-one models when analyzing the same dataset (Anderson et al., 2013; Bolker et al., 2007; 

Monzón-Argüello et al., 2010). Our modified model usually provided narrower credible intervals 

than the approach introduced by Nishizawa et al. (2013) on a many-to-many framework. Site-

specific probability matrices that incorporate complex variables such as particle dispersal model 
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estimates will enable researchers to consider multiple cohorts, variation within and among seasons, 

and multiple variables that can impact oceanographic currents (Putman & Naro-Maciel, 2013). 

Our modified many-to-many mixed stock model can incorporate new variables to make models 

more informative. More importantly, by incorporating distance between rookeries and mixed 

stocks, or particle dispersal probabilities, models we can better account for unlikely source 

populations, allowing more realistic estimates of rookery contributions to mixed stocks for robust 

ocean basin analyses. The short-fragment mtDNA markers used for MSA lack the resolution 

needed to differentiate between several rookeries (Shamblin et al., 2012). As mixed stock model 

estimates are mainly derived from haplotype frequencies (Bolker et al., 2007; Pella & Masuda, 

2001), under scenarios where the genetic marker used is unable to differentiate populations, 

covariates can help improve model accuracy. The source code and example script for incorporating 

the site-specific matrix is available in Supplementary Document S1, and we encourage others to 

use this approach to incorporate distances, transport probabilities, or any other metric that scales 

the contributions from each rookery to each mixed stock. Contribution estimates from such models 

will be more ecologically meaningful and more accurate. Further, we highlight the importance of 

long-term monitoring and periodic reassessment of mixed stock aggregations regarding stocks of 

origin, abundance, health status, and other population parameters. We also emphasize the 

importance of periodical reassessment of haplotype frequencies at rookeries, as well as basic 

demographic and reproductive parameters. For migratory endangered species such as sea turtles, 

broad analyses considering multiple rookeries within or among ocean basins with more 

informative estimates are critical for understanding dispersal, connectivity, and evolution. 



34 

 

Understanding how the composition of mixed stock aggregations shift over time is fundamental 

for the development of successful conservation plans for endangered and threatened species. 
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CHAPTER 3: THE EFFECT OF SAMPLE SIZE, SOURCE POPULATION 

DIFFERENTIATION, AND SMALL CONTRIBUTORS ON MIXED 

STOCK MODELS ESTIMATES 

Introduction 

Sample size is a fundamental aspect of any scientific study. Statistical analyses often may have 

misleading or incorrect interpretation due to inadequate sampling (Button et al., 2013; Ioannidis, 

2005). This is a serious problem for study reproducibility, particularly in studies focusing on 

endangered species (Shaw et al., 2021) or within the biological sciences (see review in Jenkins & 

Quintana-Ascencio (2020)). A minimum of 25 samples has been suggested for accurate regression 

analyses with some variance (Jenkins & Quintana-Ascencio, 2020), but datasets for other types of 

analysis lack a general guideline of minimum number of samples required for reliable and 

ecologically meaningful results. 

Small sample size occurs in studies for various reasons, ranging from difficulty of access to areas 

(e.g., tan isolated island (Martins et al., 2008)), difficult logistics (e.g., maintenance of optimal 

conditions for blood samples collected in the field (Ryser-Degiorgis, 2013), or even lack of 

funding to process more samples. Highly migratory species, or long-lived species with complex 

life histories, pose additional challenges to meeting minimum sample sizes. For example, sea 

turtles are widely distributed and occupy different habitats during different life stages, where data 

for early life stages are almost non-existent due to logistical challenges to access and locate 

individuals (Mansfield et al., 2014; Mansfield & Putman, 2013; Phillips et al., 2021; Shamblin et 

al., 2018). Reasonable or adequate sample sizes might be hard to achieve and may remain a distant 

goal for many researchers (Witmer, 2005). Large sample sizes can be even more difficult to obtain 
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for endangered species, where the number or density of individuals available for sampling is likely 

small, and regulatory agencies may impose limits on the number of samples that can be collect for 

research (e.g., Endangered Species Act in the United States and similar legislation in other 

countries). 

Despite challenges above, species distribution is vital to ecology and biogeography because it 

impacts fitness and population biology (Chuine, 2010). To understand distribution patterns for 

migratory and widely distributed species such as sea turtles, researchers have used satellite 

telemetry (Godley et al., 2002; Mansfield et al., 2014; Marcovaldi et al., 2010; Phillips et al., 2021; 

Seminoff et al., 2002; Stoneburner, 1982), stable isotopes (Ceriani et al., 2012; Seminoff et al., 

2012; Zbinden et al., 2011), or genetics (Bolker et al., 2007; Naro-Maciel, et al., 2014; Phillips et 

al., 2022; Shamblin et al., 2017; Shamblin, et al., 2015; Stahelin et al., 2022). Satellite telemetry 

data acquisition and tag cost are expensive, limiting the number of individuals that can be tracked 

per study (Ceriani et al., 2012; Roberts et al., 2018). Stable isotopes can be used in combination 

with satellite telemetry to first characterize areas used by individuals satellite tracked and then use 

the pre-defined isotopic signatures for non-tracked individuals using large sample sizes at a 

relatively low cost (Ceriani et al., 2012; Seminoff et al., 2012; Zbinden et al., 2011). For genetics, 

different markers can be used for source population assignment (e.g., mtDNA, microsatellites, 

autosomal single nucleotide polymorphisms). Statistical methods compare the frequency of 

markers found in a group of individuals to estimate the source populations where those individuals 

came from (Bolker et al., 2007; Pella & Masuda, 2001). Similarly to stable isotopes, most 

molecular markers can be used in large-scale at relatively low cost. 
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Mixed stock analyses (MSA) are regularly used to evaluate source populations of a group of 

individuals captured at mixed stock aggregations. For sea turtles, mixed stock analyses are often 

conducted using a wide number of samples per study site (Figure 3.1). In Chapter 2, I raised the 

possibility that uncertainties in some model estimates could be due to reduced sample sizes in 

sampled locations (Stahelin et al., 2022). This concern arises mostly due to the overlap in haplotype 

frequencies among some sea turtle rookeries (Supplementary Table S1). Bolker et al. (2003) 

described how the Markov Chain Monte Carlo (MCMC) applied to mixed stock models is effective 

handling rare haplotypes and sampling error. Another concern is that mixed stock analysis depends 

on a minimal discrimination between source populations through haplotype frequencies to 

determine the distribution of individuals (Pella & Masuda, 2001). Even though the Bayesian 

approach implemented in the ‘mixstock’ R package is designed to account for such imperfections 

in haplotype frequencies between source populations, molecular markers currently used may not 

provide enough resolution for accurate results (Shamblin et al., 2017). 

Aiming to address the concerns defined above regarding possible parameters influencing the 

accuracy of mixed stock model estimates, in this chapter I simulate (i) the effect of sample sizes 

on mixed stock estimates, (ii) the impact of higher resolution markers could have on model 

estimates, and (iii) determine how small contributors affect mixed stock model estimates and our 

understanding about individuals’ dispersal from breeding populations to mixed stock aggregations. 
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Figure 3.1: Examples of sample sizes used in sea turtle mixed stock analyses found in the literature. Samples 

were collected either from adult females on a nesting beach (Rookery), or in-water (Mixed stock) sampling 

sites. Sources: Anderson et al., 2013; Bagley, 2003; Bass et al., 1998, 2006; Bjorndal et al., 2005; Bjorndal 

& Bolten, 2008; Costa Jordao et al., 2017; Dutton et al., 2014; Formia et al., 2006, 2007; Jensen et al., 2016; 

Lahanas et al., 1998; Laurent et al., 1998; Luke et al., 2004; Maffucci et al., 2006; Millán-Aguilar, 2009; 

Monzón-Argüello et al., 2010; Naro-Maciel et al., 2012; Prosdocimi et al., 2012; Read et al., 2015; Ruiz-

Urquiola et al., 2010; Shamblin, Bagley, et al., 2015; Shamblin et al., 2012, 2017; Stahelin et al., 2022 

Methods 

Simulating datasets 

Using the statistical software R (R Core Team, 2016), I simulated three different scenarios of 

haplotype distribution between source populations (rookeries) (Figure 3.2), with three source 

populations in each scenario. The first scenario (Figure 3.2a), hereafter called the ‘distinct’ 

scenario, contains populations with a low level of shared haplotypes. The second scenario, 

hereafter called the ‘similar’ scenario (Figure 3.2b), simulates populations with a greater similarity 

in haplotype frequencies between populations. The third scenario, or the ‘shared’ scenario (Figure 

3.2c), contains populations with an extreme case where most haplotypes are shared among all 

populations. Comparison of these scenarios evaluates how higher resolution markers that better 
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discriminate between source populations can impact mixed stock model estimates (i.e., the similar 

scenario assumes a high-resolution marker, whereas the shared scenario is based on relatively low 

resolution). The shared scenario simulates haplotypes frequencies resembling the resolution of the 

400 bp mtDNA marker found at green sea turtle rookeries in the Atlantic Ocean (e.g., east central 

Florida, USA, Tamaulipas, Mexico, and Tortuguero, Costa Rica (Supplementary Table S1); or 

Trindade Island, Brazil, Rocas Atoll, Brazil, and Ascension Island, UK (Costa Jordao et al., 2017)). 

The similar scenario possibly represents resolution using 800 bp fragments of mtDNA, while the 

distinct scenario represents a deeper resolution from the 800 bp fragment. I used a maximum of 

19 haplotypes for these simulations to incorporate low frequency haplotypes and to closely 

simulate the number of haplotypes shared by many rookeries (Supplementary Table S1). 

 

Figure 3.2: Density plots of the haplotype frequencies for the three simulated scenarios: (a) distinct, (b) 

similar, and (c) shared. Solid lines represent the density of haplotypes occurring in each rookery. 

The following datasets were simulated for each of the haplotype frequency scenarios described 

above. I first created three rookeries based on haplotype frequencies for the corresponding scenario 
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(Figure 3.2a, b, or c). Then, to simulate a research study collecting samples from these source 

populations, I randomly sampled without replacement (i.e., to avoid resampling of the same 

‘individual’) from each rookery. Next, I randomly sampled individuals with replacement from the 

three rookeries generated in the first step to simulate dispersal and capture of individuals in order 

to create four mixed stock aggregations. During this step, I recorded the proportion of individuals 

originating from each rookery and moving to each mixed stock to compare the model estimates to 

the true contribution from each rookery. Finally, I simulated studies collecting individuals at each 

mixed stock aggregations by randomly sampling individuals without replacement. 

The population sizes for rookeries were set to be 500, 1,000, 10,000, or 50,000, while mixed stock 

aggregations had either 500, 1,000, or 5,000 individuals (Table 3.1). Categorical population sizes 

reduce the number of simulations but cover a wide range. For each combination of rookery and 

mixed stock sizes (e.g., rookery size = 500 and mixed stock size = 1,000 - Table 3.1), I sampled a 

random number of individuals from the corresponding rookeries and mixed stocks. Sample sizes 

for each sampling event ranged from 25 to 200 for the distinct and similar scenarios, and from 25 

to 300 for the shared scenario. Values for the minimum number of samples < 25 often crashed the 

mixed stock model because all haplotypes were from only one source population (i.e., it was not a 

mixed stock). Preliminary results indicated that larger sample sizes would be needed for the shared 

scenario to achieve a similar accuracy as the distinct and similar scenarios. Therefore, I simulated 

a larger number of samples for the shared scenario only. The maximum number of samples was 

set to 200 (300 for the shared scenario) to match a reasonable number of samples in real-world 

studies (Figure 3.1). Lastly, I repeated the sampling step for each combination of rookery and 

mixed stock sizes 1,000 times for the distinct and similar scenarios, and from 1,500 times for the 
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shared scenario. In total, I evaluated 12,000 models for each of the distinct and similar scenarios, 

and 18,000 models for the shared scenario. 

Table 3.1: Summary table of the parameters used for all simulated datasets. 

Population size 
 

Sample size 
 

Number of simulations 

Rookeries Mixed stocks    Distinct 

and Similar 

Shared   Distinct 

and Similar 

Shared 

500 500 
 

25-200 25-300 
 

1,000 1,500 

1,000 500 
 

25-200 25-300 
 

1,000 1,500 

10,000 500 
 

25-200 25-300 
 

1,000 1,500 

50,000 500 
 

25-200 25-300 
 

1,000 1,500 

500 1,000 
 

25-200 25-300 
 

1,000 1,500 

1,000 1,000 
 

25-200 25-300 
 

1,000 1,500 

10,000 1,000 
 

25-200 25-300 
 

1,000 1,500 

50,000 1,000 
 

25-200 25-300 
 

1,000 1,500 

500 5,000 
 

25-200 25-300 
 

1,000 1,500 

1,000 5,000 
 

25-200 25-300 
 

1,000 1,500 

10,000 5,000 
 

25-200 25-300 
 

1,000 1,500 

50,000 5,000   25-200 25-300   1,000 1,500 

 

Finally, I used the many-to-many mixed stock model from the mixstock package (Bolker et al., 

2007) in software R (R Core Team, 2016) to analyze the haplotype frequencies obtained during 

each simulation described above. See Chapter 2 for a broader review of mixed stock analysis. I 

clarify that in Chapter 2 I introduced the possibility to consider distance between sites in a many-

to-many framework, but simulations presented in this Chapter do not consider distance. Each 

model used three chains with random starting points and 20,000 iterations (10,000 iterations burn-

in). I used the Gelman-Rubin shrink factor < 1.2 from the coda package in R (Gelman & Rubin, 

1992; Plummer et al., 2006) to evaluate model convergence. 
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Data analysis 

I used three metrics to evaluate the impact of sample sizes on accuracy of mixed stock model 

estimates. The first metric was credible interval width (CIW) around model estimates. I calculated 

the CIW by subtracting the value of the 2.5% credible interval from the value of the 97.5% credible 

interval (i.e., CI from 35% - 50% = CIW with 15 percentage points). The second metric was the 

absolute difference between the true contribution from each rookery and mixed stock pair and the 

mean estimate from the model (hereafter called “absolute model estimate error”). For example, if 

the true contribution of each rookery to a mixed stock aggregation was 25%-25%-50%, and the 

model estimate was 30%-30%-40%, then the absolute model estimate error would be 5%-5%-

10%. Finally, the third metric was the probability of the true contribution from each rookery to fall 

inside the credible interval estimated by the model. Related to the absolute model estimate error, I 

also evaluated the difference between the true contribution from each rookery and mixed stock 

pair and the mean estimate from the model (“general model estimate error”) to determine if mixed 

stock models were consistently under- or overestimating the parameters across different sample 

sizes. Note that the only difference between the absolute model estimate error variable and the 

general model estimate error used to evaluate under- or overestimation is that the former uses 

absolute numbers. For all metrics, I evaluated how estimates varied for small contributing sources 

(i.e., source populations with < 5% of true contribution to a mixed stock aggregation). 

To test variations in credible intervals I fitted generalized linear models (GLM). For the absolute 

model estimate error dataset, I used the function fitDist() from the gamlss package (Rigby & 

Stasinopoulos, 2005) to fit a series of relevant parametric distributions to select an appropriate 

distribution using the Akaike Information Criterion (AIC). Following model selection with 
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fitDist(), I used a beta regression model from the betareg package (Cribari-Neto & Zeileis, 2010). 

To evaluate the probability of true contribution to be contained inside the credible interval (pCI), 

I used logistic GLM models with a binomial distribution. I tested a combination of independent 

variables for both GLMs and beta regression models: rookery sample size, mixed stock 

aggregation sample size, scaled rookery population size, scaled mixed stock population size, ratio 

of sampled individuals in rookeries in relationship to rookery population size, ratio of sampled 

individuals in mixed stock aggregations in relationship to mixed stock aggregation population size, 

and quadratic terms for rookery and mixed stock sample sizes. I used the AIC for model selection 

for models described above (Bolker, 2014). To evaluate the general model estimate error I fit a 

GLM with a gaussian distribution. As the relationship between the model estimate error and other 

variables was already established during the absolute model estimate error analysis, for the general 

model estimate error I only evaluated how model estimates varied across both source populations 

and mixed stock aggregations sample sizes. Lastly, aiming to quantify the level of similarity 

between haplotype frequency at rookeries (i.e., how difficult it is for models to distinguish between 

the source of individuals) I calculated the amount of overlap of haplotype frequencies between the 

different rookeries within each scenario using the overlapping package. All statistical analyses 

were conducted in software R using RStudio (R Core Team, 2016; RStudio Team, 2020). 

Results 

Credible interval width 

The model with the lowest AIC for the three different haplotype distribution scenarios contained 

the quadratic interaction between sample size for both rookeries and mixed stock aggregations 
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(Table 3.2 – CredibleIntervalWidth ~ MixedStockSampleSize + MixedStockSampleSize2). 

Credible interval width decreased with an increase in mixed stock aggregations sample sizes for 

all scenarios, stabilizing the CIW around 15-20 % when mixed stock aggregation samples for 

distinct and similar scenarios are > 100 (Figure 3.3, Figure 3.4, Appendix Figure A.1, and 

Appendix Figure A.2) and > 150 for the shared scenario (Figure 3.5, Appendix Figure A.3). Even 

though the interaction between sample size in rookeries and mixed stock aggregations is important 

(as indicated by model selection), mixed stock aggregation sample size is a stronger predictor of 

credible interval width than rookery sample size for all scenarios (Figure 3.3, Figure 3.4, and 

Figure 3.5). 

Table 3.2: Model selection table detailing the four highest ranked models for each scenario used to evaluate 

the relationship between credible interval width (CIW) and the different variables used in the simulations. 

MS_SSize = Mixed stock aggregation sample size, SP_SSize = Source population sample size, 

MS_PopSize = Mixed stock aggregation scaled population size, SP_PopSize = Source population scaled 

population size, dAICc = Delta AICc, df = degrees of freedom. 

 Model dAICc df Weight Scenario 

CIW ~ MS_SSize + MS_SSize2 0 4 1 Distinct 

CIW ~ MS_SSize * SP_SSize + MS_PopSize + SP_PopSize 15837.4 7 <0.001 Distinct 

CIW ~ MS_SSize * SP_SSize 15857.7 5 <0.001 Distinct 

CIW ~ MS_SSize * MS_PopSize + SP_SSize * SP_PopSize 15865.2 8 <0.001 Distinct 

CIW ~ MS_SSize + MS_SSize2 0 4 1 Similar 

CIW ~ MS_SSize * MS_PopSize + SP_SSize * SP_PopSize 20298 8 <0.001 Similar 

CIW ~ MS_SSize + SP_SSize + MS_PopSize + SP_PopSize 20303 6 <0.001 Similar 

CIW ~ MS_SSize * SP_SSize + MS_PopSize + SP_PopSize 20305 7 <0.001 Similar 

CIW ~ MS_SSize + MS_SSize2 0 4 1 Shared 

CIW ~ MS_SSize * SP_SSize + MS_PopSize + SP_PopSize 33839 7 <0.001 Shared 

CIW ~ MS_SSize * SP_SSize 33846 5 <0.001 Shared 

CIW ~ MS_SSize * MS_PopSize + SP_SSize * SP_PopSize 33890 8 <0.001 Shared 
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Figure 3.3: Distinct haplotype scenario scatter plot of credible interval width (in percentage points) of mixed 

stock model estimates as a function of mixed stock aggregations sample size. Colors represent fit lines from 

a generalized linear model with a gaussian distribution for different source population sample sizes. 

 

Figure 3.4: Similar haplotype scenario scatter plot of credible interval width (in percentage points) of mixed 

stock model estimates as a function of mixed stock aggregations sample size. Colors represent fit lines from 

a generalized linear model with a gaussian distribution for different source population sample sizes. 
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Figure 3.5: Shared haplotype scenario scatter plot of credible interval width (in percentage points) of mixed 

stock model estimates as a function of mixed stock aggregations sample. Colors represent fit lines from a 

generalized linear model with a gaussian distribution for different source population sample sizes. 

The fit lines for all haplotype distribution scenarios have similar shapes (Figure 3.6). with a small 

difference in CIW between the distinct and similar scenarios across the entire range of sample 

sizes. As observed in Figure 3.5, the shared scenario contains greater uncertainty at small sample 

sizes, and requires more samples to achieve a CIW similar to the distinct and similar scenarios 

(Figure 3.6). Similar and distinct curves inflect most strongly around 100 samples, but the shared 

curve inflects most strongly close to 200 samples. 
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Figure 3.6: Fit lines of credible interval width (in percentage points) as a function of mixed stock 

aggregation sample size for the different haplotype distribution scenarios. Colors represent fit lines from a 

generalized linear model with a gaussian distribution for different haplotypic scenarios. 

Scenarios with small contributors to mixed stock aggregations (i.e., true contribution < 5%) 

consistently have lower CIW than source populations with >10% of true contribution, regardless 

of the scenario (Figure 3.7). A similar pattern is observed for the distinct and similar scenarios; 

however, the trends converge at small sample sizes for the shared scenario (Figure 3.7). The fit 

line for contributors with > 10 % of true contribution to mixed stock aggregations is consistent 

with the general lines observed previously (Figure 3.3 - Figure 3.5). In all scenarios, the curve 

inflects most strongly around 100 mixed stock aggregation samples and continues to decline more 

slowly with more samples. 
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Figure 3.7: Scatter plot of credible interval width (in percentage points) as a function of mixed stock 

aggregation sample sizes. (a) distinct scenario, (b) similar scenario, and (c) shared scenario. Solid lines 

represent fit line for models with a subset of the dataset: blue lines represent model estimates with true 

contribution < 5%; red lines represent model estimates with true contribution > 10%. 

Absolute model estimate error 

The model with the highest support from AIC for the absolute model estimate error is a quadratic 

model of mixed stock aggregation sample size (AbsoluteModelEstimateError ~ 

MixedStockSampleSize + MixedStockSampleSize2 - Table 3.3). Absolute model estimate error 

has a negative relationship with mixed stock aggregation sample size, with a similar pattern for all 

haplotype distribution scenarios (Figure 3.8, Figure 3.9, Figure 3.10, and Appendix Figure A.4, 

Figure A.5, and Figure A.6). Rookery sample size has no effect on absolute model error estimate 

alone, and is dependent on the interaction with mixed stock aggregation sample size for a 

significant change on estimates (Figure 3.8, Figure 3.9, and Figure 3.10). 
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Table 3.3: Model selection table detailing the four highest ranked models for each scenario used to evaluate 

the relationship between absolute model estimate error (AMEE) and the different variables used in the 

simulations. MS_SSize = Mixed stock aggregation sample size, SP_SSize = Source population sample size, 

MS_PopSize = Mixed stock aggregation scaled population size, SP_PopSize = Source population scaled 

population size, dAICc = Delta AICc, df = degrees of freedom. 

Model dAICc df Weight Scenario 

AMEE ~ MS_SSize + MS_SSize2 0 4 1 Distinct 

AMEE ~ MS_SSize * SP_SSize + MS_PopSize + SP_PopSize 507 7 <0.001 Distinct 

AMEE ~ MS_SSize * SP_SSize 513 5 <0.001 Distinct 

AMEE ~ MS_SSize * MS_PopSize + SP_SSize * SP_PopSize 525 8 <0.001 Distinct 

AMEE ~ MS_SSize + MS_SSize2 0 4 1 Similar 

AMEE ~ MS_SSize * SP_SSize 535 5 <0.001 Similar 

AMEE ~ MS_SSize * SP_SSize + MS_PopSize + SP_PopSize 536 7 <0.001 Similar 

AMEE ~ MS_SSize + SP_SSize 542 4 <0.001 Similar 

AMEE ~ MS_SSize + MS_SSize2 0 4 1 Shared 

AMEE ~ MS_SSize * SP_SSize + MS_PopSize + SP_PopSize 859 7 <0.001 Shared 

AMEE ~ MS_SSize * SP_SSize 880 5 <0.001 Shared 

AMEE ~ MS_SSize * MS_PopSize + SP_SSize * SP_PopSize 909 8 <0.001 Shared 
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Figure 3.8: Distinct haplotype scenario scatter plot of absolute model estimate error (in percentage points) 

as a function of mixed stock aggregations sample. Colors represent fit lines from a regression model with 

a beta distribution for different source population sample sizes. 

 

Figure 3.9: Similar haplotype scenario scatter plot of absolute model estimate error (in percentage points) 

as a function of mixed stock aggregations sample. Colors represent fit lines from a regression model with 

a beta distribution for different source population sample sizes. 
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Figure 3.10: Shared haplotype scenario scatter plot of absolute model estimate error (in percentage points) 

as a function of mixed stock aggregations sample size. Colors represent fit lines from a regression model 

with a beta distribution for different source population sample sizes. 

The difference between fit lines for the different haplotype distribution scenarios is not as clear as 

for the credible interval width (Figure 3.11). The fit lines for the distinct and similar scenarios are 

almost indistinguishable, and both lines reach a plateau of accuracy around 5 percentage points 

when mixed stock aggregation sample size is > 100 samples. A comparable accuracy for the shared 

scenario is reached when mixed stock aggregation sample size is > 200 samples (Figure 3.11). 
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Figure 3.11: Fit lines of absolute model estimate error (in percentage points) as a function of mixed stock 

aggregation sample size for the different haplotype distribution scenarios. Colors represent fit lines from a 

regression model with a beta distribution for different haplotypic scenarios. 

Even though the scatter plots do not indicate the presence of specific unexplained clusters of data 

points as in the previous section (Figure 3.3), I evaluated the effect of small contributors (true 

contribution from a given rookery to a mixed stock aggregation is < 5%) on absolute model 

estimate error (Figure 3.12), following the same approach conducted for the CIW (used in Figure 

3.8 – Figure 3.10). For the distinct scenario (Figure 3.12a), absolute model estimate error is similar 

for both groups when mixed stock aggregation sample sizes are small (< 50), absolute estimate 

error decreases at a faster rate for the small contributing rookeries (blue line), and is consistently 

lower for sample sizes > 50. For the similar and shared scenarios (Figure 3.12b and Figure 3.12c, 

respectively), absolute model estimate error is greater for the small contributors than the larger 

contributors when mixed stock aggregation sample size is small, and the two groups have very 

similar estimate errors when sample size is > 75 for the similar scenario and > 100 for the shared 
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scenario. In general, the relationship between blue and red fit lines is alike for all scenarios, the 

main difference is that the shared and similar scenarios are shifted upwards towards greater 

uncertainty for small sample sizes. Absolute model estimate error fit lines for rookeries with > 

10% of true contribution (red lines) for all scenarios follow the same pattern observed in Figure 

3.11. 

 

Figure 3.12: Scatter plot of absolute model estimate error (in percentage points) as a function of mixed 

stock aggregation sample sizes. (a) distinct scenario, (b) similar scenario, and (c) shared scenario. Solid 

lines represent fit line for models with a subset of the dataset: blue lines represent model estimates with true 

contribution < 5%; red lines represent model estimates with true contribution > 10%. 

General model estimate error 

Results indicate that model estimates are overall not biased by sample sizes for all three scenarios 

tested (Figure 3.13, Figure 3.14, and Figure 3.15). However, contributions from rookeries to mixed 

stock aggregations tend to be overestimated for small contributors and are underestimated for 
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contributors with > 10% of true contribution (Figure 3.16). Overestimation for the small 

contributors is smaller for the distinct scenario and greater for the shared scenario (Figure 3.16). 

 

Figure 3.13: Distinct haplotype scenario scatter plot of general model estimate error (in percentage points) 

as a function of (a) mixed stock aggregation sample sizes and (b) rookery sample size. Solid lines represent 

fit line for a linear regression model. 
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Figure 3.14: Similar haplotype scenario scatter plot of general model estimate error (in percentage points) 

as a function of (a) mixed stock aggregation sample sizes and (b) rookery sample size. Solid lines represent 

fit line for a linear regression model. 

 

Figure 3.15: Shared haplotype scenario scatter plot of general model estimate error (in percentage points) 

as a function of (a) mixed stock aggregation sample sizes and (b) rookery sample size. Solid lines represent 

fit line for a linear regression model. 
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Figure 3.16: Scatter plot of general model estimate error (in percentage points) as a function of mixed stock 

aggregation sample sizes and true contribution from rookeries. Red lines = small contributors with true 

contribution < 5%; blue lines = contributors with true contribution > 10%; green dotted line represent the 

zero value for reference. (a) distinct, (b) similar, and (c) shared scenario. 

Probability of true contribution fitting inside the credible interval 

The logistic regression models indicate an increased accuracy of models with larger sample sizes 

(Figure 3.17). For all scenarios the probability of true contributions to fall inside the credible 

interval range is ~60% for small sample sizes, increasing to ~70% with increased mixed stock 

aggregation sampling. Rookery sample size has a small effect on model accuracy (Figure 3.17). 



57 

 

 

Figure 3.17: Logistic regression models of the probability of the true contribution from source populations 

to be contained inside the credible intervals as a function of mixed stock aggregation sample size. (a) 

distinct, (b) similar, and (c) shared scenario. Solid lines represent different rookery sample sizes. 

Evaluating the impact of small contributors to the estimates revealed that model accuracy is poor 

for very small contributors (Figure 3.18). Estimates from small contributors are mostly outside of 

the credible intervals for small sample sizes in all scenarios (Figure 3.18a-c). For the entire range 

of sample sizes evaluated, probability of true contribution being contained inside the credible 

intervals never goes above 60% for the small contributors. For rookeries with > 10% of true 

contribution to mixed stocks, probability remains around 80% throughout the entire range of 

simulated sample sizes. Finally, for the true contributions from rookeries to mixed stock 

aggregations that were not contained inside the credible intervals, I calculated the absolute 

difference between the true contribution to the edge of the credible intervals (Figure 3.19). We can 

see that the most points that fell outside of the credible intervals by less than 5 percentage points. 
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Figure 3.18: Logistic regression models of the probability of the true contribution from source populations 

to be contained inside the credible intervals as a function of mixed stock aggregation sample size. (a) 

distinct, (b) similar, and (c) shared scenario. Solid lines represent fit line for models with a subset of the 

dataset: blue lines represent model estimates with true contribution < 5%; red lines represent model 

estimates with true contribution > 10%. 

 

Figure 3.19: Scatter plot of the absolute difference between true contribution from rookeries to mixed stock 

aggregations and the end of the range of credible intervals as a function of mixed stock aggregation sample 

sizes for model estimates that the true contribution from rookeries to mixed stock aggregations were not 

contained inside the credible intervals. (a) distinct, (b) similar, and (c) shared scenario. Blue lines represent 

model estimates with true contribution < 5%; red lines represent model estimates with true contribution > 

10%. 
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Haplotype frequency overlap 

The amount of overlap between rookeries varied considerably between the scenarios (Table 3.4 

and Figure 3.2). The distinct scenario had an average of 17.7% of overlap, the similar scenario had 

an average of 27.2%, while the shared scenario had an average of 45.1%. 

Table 3.4: Proportion of overlap between haplotype frequencies between the different rookery haplotype 

distribution scenario considered in the simulations. 

Scenario Pop1-Pop2 Pop1-Pop3 Pop2-Pop3 

Distinct 20.58% 21.01% 11.66% 

Similar 25.42% 30.44% 25.78% 

Shared 46.14% 48.46% 40.76% 

 

Discussion 

Results of this chapter demonstrate the effectiveness of mixed stock models to understand dispersal 

and composition of mixed stock aggregation sites, even at convoluted haplotype frequency 

scenarios. There are some caveats to using these models, and here I discuss how using more refined 

molecular markers and larger sample sizes can influence estimates, model accuracy, and ecological 

inferences. 

No previous studies evaluated in depth the impact of sample size on mixed stock analysis using 

mtDNA markers. The lack of standardized guidelines might be one of the reasons for a wide range 

of sample sizes used by researchers (Figure 3.1). For instance, in Chapter 2, I used 72 samples 

from the Indian River Lagoon and 80 samples from Trident Basin for the mixed stock models even 

though the number of samples I had access to was much larger and I could have used > 150 samples 
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for each sampling site and period. The decision on the number of samples used was based on a 

number that seemed reasonable at the time based on the published literature and funding available 

for Sanger sequencing. Based on the results presented here, researchers need to be aware of the 

possible bias in their results driven by the sample size used. 

Here, I demonstrate that, except for small contributors, true contributions from rookeries to mixed 

stock aggregations are often contained inside the CIs, and absolute model estimate error and CIW 

have a negative relationship with mixed stock aggregation sample size. Accurate mixed stock 

analysis using mtDNA markers can be achieved near 100 samples for distinct and similar scenarios 

and 150-175 samples for the shared scenario. Around 50-60 samples from rookeries under any 

scenario regardless of the size of the reproductive population can also provide enough data for 

mixed stock models. This is an important finding as researchers could focus on generating high 

quality data (e.g., sequence longer mtDNA fragments and associated microsatellites) from a 

reasonable number of reproductive individuals and increase sample size from mixed stock 

aggregations. Results presented here give a clear direction that future studies should prioritize 

larger samples sizes in mixed stock aggregations to improve model accuracy. It is important to 

acknowledge that, (i) the number of samples for mixed stock aggregations suggested here might 

be extremely hard to achieve in some locations or for specific sea turtle life stages, due the 

logistical challenges to access the habitats where animals live or to even encounter the animals 

within these habitats (Mansfield et al., 2014; Phillips et al., 2022; Witherington et al., 2012), and 

(ii) models used here are more complex than linear regressions, which can certainly impact the 

effect that sample size has on the response variable. Therefore, despite the suggestion of minimum 
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sample sizes presented here, larger datasets should be encouraged (Ioannidis, 2005; Jenkins & 

Quintana-Ascencio, 2020). 

I call attention to the fact that, even for large sample sizes and scenarios with a clearer distinction 

between rookeries (i.e., distinct scenario), the true contribution from rookeries to mixed stock 

aggregations was contained inside the 95% credible interval around 80% of the times (Figure 

3.18). Figure 3.19 shows how close to the credible interval most of the points were, though it is 

unclear why or which variable could be the cause of this issue. A possible solution for this 

inaccuracy could be to use 99% credible intervals instead of 95% to ensure most of those true 

contribution points to be included inside the credible intervals in future models. 

I also demonstrate the importance of using higher resolution markers for mixed stock analysis, 

especially in the context of sea turtle assessments. Comparing results between the shared and 

similar scenarios indicate that the resolution of the genetic marker used can help reduce the number 

of samples required for accurate estimates. I highlight that the proportion of overlap between 

haplotype frequencies used in this Chapter (Table 3.4) is merely a measurement of similarity 

between rookeries. Other researchers can use metrics of overlap to compare how convoluted 

haplotype frequencies relate to the scenarios simulated here. Shamblin et al., (2017) used a longer 

mtDNA fragment and developed extra mitochondrial microsatellites to refine differentiation 

between rookeries in Florida and Mexico for green turtles captured in the Gulf of Mexico. Several 

sea turtles rookeries have only been assessed for the short (417 bp) mtDNA fragment, while many 

mixed stock aggregations have generated data using long mtDNA fragments (e.g., Hancock et al., 

2019; Naro-Maciel, Gaughran, et al., 2014; Patrício et al., 2017; Phillips et al., 2022; Stahelin et 
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al., 2022). This inconsistency between shorter fragments for rookeries and longer fragments for 

mixed stock aggregations hampers studies’ capacity for broader and accurate estimates of dispersal 

between areas. As a result, researchers normally must decide to either a) consider more rookeries 

as possible sources at the expense of using a poorer molecular marker, or b) evaluate fewer 

rookeries with better markers (Phillips et al., 2022; Shamblin et al., 2017; Stahelin et al., 2022). 

The reason for such mismatch might be that most sea turtle research is conducted by separate 

groups with their own specific short-term goals, questions to answer, conservation issues to 

address, and often a limited budget for molecular analyses. Even though mtDNA seems like the 

logical choice of molecular marker for sea turtles given their philopatric behavior, other markers 

could be used for mixed stock analysis with potentially greater resolution between areas. Mixed 

stock analysis in groups other than sea turtles tend to use either multiple loci (e.g., 82 autosomal 

loci in gray whales; Brüniche-Olsen et al., (2018)), or large sample sizes and multiple loci (e.g., 

180 SNP loci across 9991 individuals from 116 populations of steelhead trout; Hess et al., (2016)). 

The use of other molecular markers for mixed stock analysis could more easily increase 

differentiation between rookeries and improve model estimates and refine designation of Distinct 

Population Segments or Regional Management Units for the species. 

An interesting finding from these simulations is the small difference between absolute model 

estimate error for the shared and distinct and similar scenarios (Figure 3.11). Even though there is 

greater uncertainty around estimates for the shared scenario, as seen in CIW (Figure 3.6), the 

absolute model estimate error becomes consistently smaller and reaches similar accuracy levels as 

the other scenarios with increased sample sizes (> 150-175 samples). Moreover, for rookeries with 

> 10% of true contribution to mixed stock aggregations, the probability of true contribution falling 
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inside the credible intervals is consistently high around 80% (Figure 3.18). These results indicate 

the robustness of the many-to-many approach, even under extreme conditions as the shared 

scenario. 

The bias introduced by small contributors to the analysis is observed in Figure 3.7, with a clear 

separation of point estimates from the remaining of the results. One hypothesis for a lower credible 

interval for small contributors is the proximity of the estimates to zero. Credible intervals for these 

estimates are necessarily bounded by zero, leading to tighter credible intervals. If this hypothesis 

is correct, the same pattern would be observed on estimates for rookeries with true contribution > 

95%, but the simulation code constrained the proportion of the contributions from rookeries to 

range from ~2% to ~75%. However, the absolute model estimate error associated with small 

contributors (Figure 3.12) indicates that the mean estimate is farther from the true contribution for 

small contributors especially in the similar and shared scenarios (Figure 3.12b and c), suggesting 

that this hypothesis might not be correct Figure 3.18. 

Another explanation for the bias introduced by small contributors would be the presence of 

haplotypes in mixed stock aggregation samples that are commonly found in small contributing 

rookeries (i.e., a sampling bias). Mixed stock haplotype frequencies could be skewed towards 

common haplotypes found in the small contributing rookery especially when the sample size is 

small, simply due to chance. Mixed stock models appear to often overestimate rookery 

contribution from small contributors likely by assuming that the mixed stock sample size is truly 

representative of the mixed stock aggregation pool of haplotypes. Bolker et al., (2003) built into 

the mixed stock model framework ways to account for biased sampling, especially the ones related 
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to occurrence of rare haplotypes, but data presented here might be an indication that other cases of 

bias also affect results. This hypothesis seems to better explain the pattern observed for credible 

interval width, absolute model estimate error, and probability of contribution inside credible 

intervals observed. 

Importantly, as contributions to mixed stock aggregations must add to 100%, the bias introduced 

by small contributors has, inevitably, a cascade effect on all other estimates. This is clearly 

observed on Figure 3.15 and Figure 3.16: there is a consistent overestimation of contributions from 

small contributors, which is compensated by underestimating the contributions other source 

populations, resulting in the overall null trend seen on Figure 3.15. Three solutions exist to reduce 

bias introduced by small contributors to mixed stocks: (a) incorporate distance between mixed 

stock aggregations and source populations into many-to-many mixed stock models (per Stahelin 

et al., 2022); (b) increase mixed stock aggregation sample sizes to reduce the risk of biased 

sampling (Figure 3.7 and Figure 3.12); and/or (c) remove small contributors/source populations 

from analyses all together (Engstrom et al., 2002; Jensen et al., 2020). In most cases, it might be 

difficult or almost impossible to identify a priori small contributors. For instance, in Chapter 2 I 

decided to remove all rookeries from the south Atlantic and West Africa to reduce possible noise 

introduced by unlikely contributors, even though the model introduced in Chapter 2 considering 

distance between sites could help reduce such noise. It is important to note that Bolker et al., (2003) 

evaluated how well Markov Chain Monte Carlo (MCMC) estimation can handle rare haplotypes 

from source populations, but the case of small contributors simulated here seem to escape the 

robust approach implemented in the many-to-many mixed stock analysis. The reason for this could 

be due to the occurrence of common haplotypes from the small contributing population in the 
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mixed stock aggregation sample (biased sampling), which is different than having rare haplotypes; 

a condition that can be handled by the MCMC approach (Bolker et al., 2003). 

Simulations presented in this chapter only consider scenarios with 19 haplotypes. Mixed stock 

models treat haplotypes that occur in the same areas as a single haplotype (e.g., if haplotypes A, 

B, and C are only found in rookery X and mixed stocks Y and Z are treated as haplotype D – see 

Bolker et al., (2007)). Even though more haplotypes available could theoretically mean increased 

capacity to distinguish rookeries, as markers providing the same information are combined, the 

number of markers used by the model can be much lower. Therefore, a different number of 

haplotypes available does not necessarily mean that the simulation results would drastically 

change. More importantly, sea turtle rookeries can be considered less complex from a haplotype 

frequency standpoint than the mixed stock aggregations, as philopatric behavior creates 

similarities among individuals from the same reproductive area. For this reason, it makes sense for 

fewer samples to be required from rookeries to achieve accurate estimates. 

A possible caveat is the impact of the number of source populations on estimates, as all simulations 

presented here had three source populations. Larger sample sizes could be required for models 

with more source populations or with more complex scenarios than the ones simulated here. For 

instance, there might be a minimum number of samples required based on the number of possible 

source populations. Considering the shared scenario as an example: what if we added a fourth 

source population that overlapped only a small proportion of haplotypes with the three other 

convoluted populations? Results from the distinct and similar scenarios indicate that the mixed 

stock model is robust enough to effectively identify contributions from this 4th population. Still, 
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future studies should address this question to determine the impact of sample size required if more 

source populations are added to the dataset. 

Conservation implications and recommendations 

Understanding the level of error involved in estimates based on the sample size used for analysis 

is of critical importance for researchers and managers to design future experiments. Proper 

conservation planning and management plans of imperiled species rely on accurate statistical 

models. Therefore, it is of maximum importance for studies of dispersal and connectivity between 

populations across ocean basins to provide reliable and accurate estimate to managers. 

Based on results here, I would strongly recommend the sea turtle research community to work 

together on reassessing the genetic haplotypes frequencies of rookeries using the higher resolution 

mtDNA markers available for each species. This action alone would allow future studies to move 

away from the shared scenario simulated here towards the similar or distinct ones, improving 

quality of estimates and interpretation of results without the need of prohibitive sample sizes. 

Second, to reduce costs and allow larger number of samples to be analyzed, I would recommend 

different groups to either work together in laboratory steps or use larger sample sizes especially 

for mixed stock aggregations. Third, researchers should consider using the 99% credible intervals 

instead of 95% credible interval to ensure the true contribution from rookeries to mixed stock 

aggregations is contained within the credibility interval. Fifth, the most important recommendation 

from this simulation, is for future studies to use large sample sizes especially in mixed stock 

aggregations. Sample size above 150 samples from each mixed stock aggregation evaluated should 

be the goal for future sea turtle mixed stock studies using mtDNA markers. Model accuracy and, 
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consequently, ecological inferences about the dynamics between rookeries and mixed stock 

aggregations can be greatly improved with larger number of samples. Finally, I would recommend 

that governmental and international agencies coordinating funds for sea turtle research to support 

the use of the most advanced molecular methodologies available to date, seeking to improve our 

knowledge regarding population structure and dispersal patterns.  
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CHAPTER 4: GENETIC STRUCTURE AND DEMOGRAPHIC 

INFERENCE OF THE GREEN SEA TURTLE FROM THE EAST COAST 

OF CENTRAL FLORIDA 

Introduction 

Population genomics is a powerful tool to inform conservation actions and management plans for 

species of interest (Funk et al., 2019). Imperiled species that have exhibited population declines 

face an increased risk of inbreeding depression and reduced genetic diversity. This loss of diversity 

in contemporary time can lead to an increased risk of extinction. For example, a reduction in 

population size led to increased inbreeding for the Glanville fritillary butterfly (Melitaea cinxia), 

which increased the extinction risk for this species (Saccheri et al., 1998). Similarly, the southern 

dunlins (Calidris alpina schinzii) fitness was impacted by reduced genetic diversity (Blomqvist et 

al., 2010). Evolutionary processes and threats from human development can trap species in an 

extinction vortex that can be caused by a drastic reduction or fragmentation of populations, low 

genetic diversity, genetic drift, and decreased population fitness (Gilpin & Soulé, 1986). Though 

incipient, conservation planning and monitoring using genomic data can greatly improve our 

understanding of long-term and complex ecological processes for wild populations (Bernos et al., 

2020; Forester et al., 2022; Funk et al., 2019; Nielsen et al., 2020).  

Maintenance of genetic diversity is fundamental for species’ survival and reduction of extinction 

risk in wild populations (Frankham, 2005). Populations may experience a decrease in genetic 

diversity through geographic isolation and/or bottleneck events (Hoelzel et al., 2002). For instance, 

the northern elephant seal population had a decrease in genetic diversity and fitness following a 

strong bottleneck (Hoelzel et al., 2002). Prolonged population isolation could lead to speciation, 
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unless there is sufficient gene flow between one or more populations (Ferrière et al., 2004). Gene 

flow between populations is a crucial factor in both preventing reduction in population size and 

loss of genetic diversity over time. Long-term monitoring of genetic parameters and assessment of 

historical demographic variations in wild populations is important for the conservation of 

imperiled species.  

Sea turtles are a group of species with a philopatric reproductive behavior, in which individuals, 

after dispersal and developmental stages, return to their natal populations for reproduction (Bowen 

et al., 1992). Despite female strong reproductive site-fidelity, previous studies indicate low to 

moderate levels of male-mediated gene flow between reproductive areas (Karl et al., 1992; Roberts 

et al., 2004; Roden et al., 2013). Foraging habitats for sea turtles, unlike reproductive areas, are 

composed of individuals from multiple genetically distinct populations (Bjorndal & Bolten, 2008; 

Bowen et al., 1996; Phillips et al., 2022; Shamblin et al., 2012; Stahelin et al., 2022; van der Zee 

et al., 2019). Even though sea turtles spend most of their lives in the ocean, most research and 

conservation actions are beach-centered (Bjorndal, 1999). As a result, management strategies often 

rely on data from reproductive population to delineate management units or distinct population 

segments (Seminoff et al., 2015; Wallace et al., 2010). 

A recent analysis indicate that the green sea turtle (Chelonia mydas) mixed stock aggregations in 

east coast of central Florida, United States, are composed of individuals from multiple nesting sites 

throughout the Greater Caribbean (Stahelin et al., 2022). The rookeries identified by Stahelin et 

al., (2022) as the main contributors to east central Florida mixed stocks are part of the North 

Atlantic Distinct Population Segments (DPSs), which are going through considerable demographic 
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growth during the past few decades (Chaloupka et al., 2008; Stahelin et al., 2022; Wallace et al., 

2010). Population genomics in mixed stock aggregations can enhance our understanding regarding 

genetic differentiation between populations within the Northwest Atlantic RMU and future 

management strategies for this species. The goals of this Chapter are to (i) determine if the number 

of genetic clusters identified using genomics is similar to the number of source populations 

Stahelin et al., (2022) identified using mtDNA, (ii) determine how the predominance of genetic 

clusters varied over time in each of the sampling sites, and (iii) estimate historical demographic 

parameters for each of the genetic clusters. 

Methods 

Study site and data collection 

I used samples collected from the main reproductive site for green turtles in Florida: at the Brevard 

County portion of the Archie Carr National Wildlife Refuge, in Melbourne Beach (MB), Florida, 

USA (Ehrhart et al., 2014). In addition, I also used samples from two mixed stock aggregations in 

the east coast of Central Florida: the Indian River Lagoon (IRL) site south of the Sebastian Inlet 

(Ehrhart et al., 2007), and the Trident Submarine Basin (TRID) site at Port Canaveral (Redfoot & 

Ehrhart, 2013). Biological samples were collected under permits NMFS 19508, MTP-231, and 

their predecessors. All specimens used in this study were collected in accordance with animal care 

and use protocols approved by the Institutional Animal Care and Usage Committee at the 

University of Central Florida (IACUC 2020-04, 2020-18, 2020-138, and their predecessors). 

The sampling scheme is the same used in Stahelin et al., (2022): two sampling periods for each 

site. In short, samples collected from MB (rookery) were grouped based on the first year of capture 
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of the turtles: from 1985 to 1999 (old) and from 2016 to 2018 (new). For in-water (mixed stock 

aggregations) data, samples from IRL and TRID were grouped to each sampling period if any of 

the (re)capture dates occurred from 2003 to 2005 (old) or from 2016 to 2018 (new). I used 60 

samples from nesting females (n = 30 per sampling period) and 240 samples from juveniles (n = 

60 per sampling period per site). Animals were captured, measured, and tagged following 

standardized methods for these sites (Ehrhart et al., 2007; Phillips et al., 2021; Redfoot & Ehrhart, 

2013). To ensure individual identification, each turtle was tagged with an Inconel tag in each front 

flipper and, since 1999, with a passive integrated transponder tag. All animals had their straight 

carapace length (SCL) from the nuchal notch to the tip of the longest pygal scute (Bolten, 1999). 

Skin and blood samples were collected and stored as described in Stahelin et al., (2022). 

DNA extraction and SNP generation 

I extracted genomic DNA using a Qiagen DNeasy blood and tissue kit following the 

manufacturer’s protocol or a Serapure Bead method (Rohland & Reich, 2012) with adaptations 

(Faircloth & Glenn, 2016). We used a double-digest restriction enzyme protocol (Peterson et al., 

2012) to generate single nucleotide polymorphisms (SNPs) with SbfI-HF (NEB R3642) and 

Sau3AI (NEB R0169). I size-selected fragments ranging from 550 to 900 bp using a Pippin Prep 

(Sage Science) and sequenced pooled libraries of 144 individuals in two lanes of paired-end 150 

bp reads in Illumina HiSeq 2500 or HiSeq 4000. 

I assessed the quality of RADseq sequencing files using FastQC (Andrews, 2010). To demultiplex 

individuals, I used ‘process_radtags’ in Stacks v2.41 (Catchen et al. 2013) and aligned sequences 

to a reference genome (Bentley et al., 2022) using Bowtie 2 (Langmead & Salzberg, 2012) and 
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SAMtools (Li et al., 2009). I executed the pipeline in software Stacks using the ref_map.pl wrapper 

and used Populations to keep only one random SNP per loci (Catchen et al. 2013). I removed SNPs 

with missing genotype rate data > 10% (-geno 0.1), individuals with a missing rate of genotype 

data > 10% (-mind 0.1), and SNPs with minor allele frequency < 1% (-maf 0.01) using PLINK 

v1.9 (Purcell et al., 2007). Using the list of filtered SNPs (whitelist) and samples, I generated a 

new population map and used the whitelist of loci for calculations of population-wide statistics in 

Populations (Catchen et al. 2013). 

Data analyses 

To identify the number of genetic clusters, I grouped all individuals from MB as one population 

and all in-water samples as a second population. I used the software ADMIXTURE v1.3 

(Alexander et al., 2009), with a maximum likelihood approach to estimate ancestries to identify 

possible genetic clusters (K = 1-8; the maximum number of K was selected using 2 + the 6 likely 

sources identified by MSA in Chapter 2) within all samples. I evaluated 2 extra Ks in case 

evaluation using genomic data could be able to identify additional clusters than the ones suggested 

by mtDNA data. I used three different clustering algorithms to evaluate consistency in results using 

different approaches. The first method used was a combination of a Discriminant Analysis of 

Principal Components (DAPC) and Principal Component Analysis (PCA) implemented in the R 

package Adegenet v2.1.8 (Jombart, 2008; R Core Team, 2016) to detect potential genetic clusters 

within all samples. For DAPC and PCA, all missing genotype data were completed with the mean 

allele frequencies. I adjusted the final number of principal components using the a-score and used 

two discriminant functions. Secondly, I used software STRUCTURE v2.3.4 (Pritchard et al., 

2000), a Bayesian-based algorithm with 100,000 iterations of burn-in followed by 500,000 



73 

 

iterations for the posterior distribution. To select the best K for the STRUCTURE results, I used 

the Evanno method in CLUMPAK, which evaluates variations on the log probability between 

sequential pairs of K (K)(Evanno et al., 2005; Kopelman et al., 2015). Lastly, I used software 

ADMIXTURE, which uses a maximum likelihood approach to estimate ancestries for sampled 

individuals to determine clusters and cross-validation to select the most probable value of K 

(number of populations/clusters) (Alexander et al., 2009). I included all principal components 

available (n = 231) and defined the maximum number of clusters as 8 (same used for 

ADMIXTURE and STRUCTURE). 

I used a Fisher’s exact test to evaluate the variation in the proportion of genetic clusters found in 

each sampling period, and in each sampling period for each site (i.e., if the proportion of 

individuals from Cluster X in site Y changed between sampling periods). Fisher’s exact test was 

run using function prop.test() implemented in software R (R Core Team, 2016). 

To estimate historical demographic parameters and divergence times between genetic clusters I 

created coalescent models using software FASTSIMCOAL v2.7 (Excoffier et al., 2021). I created 

a series of models simulating different arrangements of divergence between populations, the 

presence of bottleneck(s) in each of the clusters, different arrangements of gene flow, varying 

population sizes over time, and models with and without a recent population growth or decline. 

Each model contained 1,000,000 simulations (-n) to get parameter estimates, used the minor allele 

frequency (-m) to compute the site frequency spectrum (SFS), and mutation rate of 1.2 x 10-8 

substitutions per site per generation previously used in green turtle analysis (Fitak & Johnsen, 

2018). The minimum observed SFS (-C) was set to 10, and used maximum composite likelihood 
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for parameter estimation (-M). As FASTSIMCOAL uses an approximation for the parameters, I 

ran each model at least 100 times, and used the model with the highest likelihood for comparison 

between models. Finally, I used a non-parametric bootstrap (block-bootstrap) to estimate 

confidence intervals. Block bootstrap is done by splitting the SNP data into n equally sized blocks, 

randomly picking blocks n blocks to recreate a SNP datafile, and running the selected model 100 

times to obtain the maximum likelihood. The process of creating a random SNP datafile and 

running through the selected model 100 times was repeated 50 times. Finally, the estimates of the 

50 models with the highest maximum likelihood were combined and confidence intervals were 

calculated using the boot package in R (Canty, 2002). 

Results 

Out of the 231 individuals used for genomic analyses, the mean SCL at first capture in MBold was 

101.6 cm (SD 5.2 cm, range 95.6 – 114.1 cm, n = 16), and in MBnew was 97.7 cm (4.9 cm, 88.8 – 

109.2 cm, n = 26). For in-water samples, the mean SCL in IRLold was 45.3 cm (9.7 cm, 30.2 – 68.6 

cm, n = 48) and in IRLnew was 48.4 cm (8.34 cm, 32.4 – 66.7 cm, n = 56), while in TRIDold it was 

29.6 cm (2.9 cm, 23.4 – 39.2 cm, n = 55) and in TRIDnew was 31 cm (5.2 cm, 23.7 – 54.9 cm, n = 

58). 

I trimmed sequences to 135 bp to ensure consistent data quality for base calling across samples. A 

total of 300 samples were initially processed and sequenced with the ddRAD protocol, and 231 

samples passed all data quality checks and filtering steps. The mean depth of coverage was 48.4x 

(SD = 35.6x, range 4.1x – 170.4x). I recovered a total of 14,731 SNPs that were used for 

downstream analyses. 
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Population structure 

Pairwise FST between sampling sites and time-period indicates low genetic differentiation among 

all sites, ranging from 0.0052 to 0.0114 (Table 4.1). Using a PCA to evaluate possible differences 

between cluster of individuals regarding their site of capture or sampling period indicated that 

there was a major overlap between all sites and sampling periods (Figure 4.1). 

Table 4.1: Pairwise FST values between sites and time-periods. 

 MBnew IRLold IRLnew TRIDold TRIDnew 

MBold 0.0145 0.0101 0.0099 0.0114 0.0103 

MBnew  0.0076 0.0078 0.0084 0.0082 

IRLold   0.0054 0.0059 0.0056 

IRLnew    0.0055 0.0052 

TRIDold     0.0056 

 

 

Figure 4.1: Principal component analysis (PCA) with genetic clusters assigned based on sampling site and 

time-period. 
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I then identified clusters of individuals (function find.clusters() from the Adegenet package in R), 

where individuals were grouped into four different clusters (Figure 4.2). Cluster 2 is the most 

differentiated one, while Clusters 1 and 3 are the most similar (Figure 4.2, Table 4.2). Comparing 

the sampling site and period to the clusters inferred by DAPC, 63.6% of samples from MBold, fell 

into Cluster 3, while the remaining 36.4% grouped with Cluster 4 (Table 4.3). For MBnew, also had 

most samples in Cluster 3 (88.5%), 7.7% of individuals in Cluster 4, and only 1 sample (3.8%) 

grouped with Cluster 2. For in-water samples, IRLold is the only site with individuals in all 4 

clusters, with 74.5% of samples falling into Cluster 3, followed by 19.2% in Cluster 1. IRLnew had 

a similar composition with 62.8% of samples in Cluster 3 and 35.3% in Cluster 1, but IRLnew has 

no sample in Cluster 2. Samples from TRID only fell into Clusters 3 and 1, but there was a 

predominance of individuals from Cluster 3 in TRIDold with 69.8%, while Cluster 1 was more 

abundant in TRIDnew with 58.5% of samples (Table 4.3). 
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Figure 4.2: Discriminant analysis of principal component using clusters determined by de novo approach 

within samples from all sampling sites and time-periods. 

Table 4.2: Pairwise FST values between inferred de novo genetic clusters. 

 Cluster 2 Cluster 3 Cluster 4 

Cluster 1 0.0126 0.0045 0.0127 

Cluster 2  0.0069 0.0858 

Cluster 3   0.0058 
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Table 4.3: Number of samples from each sampling site and time-period versus inferred genetics clusters 

from de novo assignment. 

  Cluster 1  Cluster 2 Cluster 3 Cluster 4 

MBold   7 4 

MBnew  1 23 2 

IRLold 9 2 35 1 

IRLnew 18  32 1 

TRIDold 13  30 
 

TRIDnew 31  22 
 

Total 71 3 149 8 

 

Using software STRUCTURE to identify the same clusters as detected using DAPC, I was able to 

identify only 3 clusters with the Evanno method for best K: Cluster 2 was grouped with Cluster 1 

(Figure 4.3). All three clusters identified have some level of admixture with one or both of the 

other clusters. Following the same rationale and using software ADMIXTURE to identify clusters 

using clusters from DAPC as populations indicated that samples are mostly admixed (i.e., K = 1 - 

Figure 4.4) based on cross validation error. 
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Figure 4.3: Result of the STRUCTURE analysis using de novo clusters from the Discriminant Analysis of 

Principal Component as populations. Values of K indicate the number of populations in each plot. The 

Evanno-method for K selection indicates K = 3. 

 

Figure 4.4: Result of the ADMIXTURE analysis using de novo clusters from the Discriminant Analysis of 

Principal Component as populations. Values of K indicate the number of populations in each plot. Cross-

validation error indicate K = 1. 

K=1

K=2

K=3

K=1

K=2

K=3

K=6

K=7

K=8

Minor modes for the uploaded data:

K=2    MinorCluster1

K=3    MinorCluster1

K=4    MinorCluster1

K=5    MinorCluster1

K=5    MinorCluster2

Division of runs by mode:

K=1 50/50
K=2 38/50, 12/50
K=3 28/50, 22/50
K=4 37/50, 13/50
K=5 23/50, 14/50, 8/50
K=6 12/50
K=7 2/50
K=8 2/50
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Proportion of clusters over time 

The proportion of individuals from each genetic cluster is summarized in Table 4.4, along with the 

results of the Fisher’s exact test. I found that Cluster 1 significantly increased in the proportion 

when all sample were combined, from 21.8% to 37.7% (Table 4.4). Also, Cluster 1 significantly 

increased in the proportion of individuals from 30.2% to 58.5% while Cluster 3 exhibited a 

significant decrease in its prevalence at TRID from 69.8% to 41.5%. Variation for all other clusters 

and sites were not significant. 

Table 4.4: Proportion of the clusters identified by the Discriminant Analysis of Principal Components in 

each sampling period. p-value represents the value obtained from a Fisher’s exact test. * indicate 

significance for  = 0.05. ALL = samples from all sampling sites were combined into a single dataset; MB 

= samples from the Melbourne Beach rookery; IRL = samples from the Indian River Lagoon; TRID = 

samples from the Trident submarine basin. 

 Sampling period   

Clusters OLD NEW p-value Site 

Cluster 1 21.78% 37.69% 0.01405* 

ALL 
Cluster 2 1.98% 0.77% 0.8254 

Cluster 3 71.29% 59.23% 0.07824 

Cluster 4 4.95% 2.31% 0.4672 

Cluster 1 0.00% 0.00% - 

MB 
Cluster 2 0.00% 3.85% 1 

Cluster 3 63.64% 88.46% 0.1926 

Cluster 4 36.36% 7.69% 0.09399 

Cluster 1 19.15% 35.29% 0.1185 

IRL 
Cluster 2 4.26% 0.00% 0.4393 

Cluster 3 74.47% 62.75% 0.3033 

Cluster 4 2.13% 1.96% 1 

Cluster 1 30.23% 58.49% 0.01055* 

TRID 
Cluster 2 0.00% 0.00% - 

Cluster 3 69.77% 41.51% 0.01055* 

Cluster 4 0.00% 0.00% - 
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Coalescent models 

The model with the highest support from maximum likelihood is summarized in Figure 4.5 and 

Appendix Table B.3. Using the generation time for the Western Atlantic ocean of 38.5 years as a 

reference (Seminoff, 2004), the split between clusters 1 and 2 (TDI1) happened 31.9 (CI 23.1 – 

36.3) Mya, while the split between clusters 1 and 3 (TDI2) was 7.8 (5.2 – 10.0) Mya, and between 

clusters 1 and 4 (TDI3) was 2.9 (2.3 – 3.9) Mya. Cluster 2 had an increase in population size 

following TDI1 and has remained with a relatively constant effective population size (Ne) of 

526,413 (352,534 – 619,161) individuals since then. Effective population size for cluster 1, on the 

other hand, grew much larger than cluster 2 following TDI1, reaching 5.6 million individuals 

(4.2e+6 – 6.8e+6). Cluster 1 had a major reduction in Ne during TDI2 to 1.8 million individuals 

(1.3e+6 – 2.2e+6), when cluster 3 diverged from cluster 1. Cluster 3 remains with a constant Ne 

of 506,422 (430,889 – 583,649) since TDI2, while cluster 1 had another reduction in Ne during 

TDI3, when cluster 4 diverged from cluster 1 in a bottleneck event. Since TDI3, both clusters 1 

and 4 remain with a constant Ne of 550,410 (408,638 – 660,872) and 536,892 (388,712 – 623,722) 

individuals respectively. Following TDI1 there was no gene flow occurring between clusters 1 and 

2. After TDI2 there was some gene flow between clusters 1 and 3. Currently, since TDI3 there is 

gene flow occurring between all 4 clusters at different levels (Figure 4.5 and Appendix Table B.3). 
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Figure 4.5: Diagram indicating the demographic model for the four genetic clusters identified in all samples. 

N1-N4 represent the estimate of effective population size for each of the clusters from Figure 4.2. Blue 

dotted lines indicate the estimate divergence events for each of the clusters. NAnc = Effective population 

size of ancestral population. TDI = Time of divergence (1 – 3) in generations between clusters. BOT1 – 

BOT3 indicate the time in generation when a bottleneck happened. Red arrows represent gene flow between 

the different clusters in number of genes per generation. Gene flow between TDI2 and TDI3 happened only 

between clusters 1 and 3, while it is happening among all 4 clusters between TDI3 and current time. Column 

widths generally represent population size, but it is not to scale. Generation times between divergence 

periods are not to scale. 

Discussion 

In this chapter, I demonstrated that green sea turtle genetic structure for the Greater Caribbean is 

composed of 3 major genetic clusters, and I evaluated how dispersal of green sea turtles in the 

Atlantic Ocean might have happened. I also found evidence of changes in composition of mixed 

stock aggregations in recent years. 
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Assuming that the genetic structure for nuclear markers is similar to the one found in mtDNA 

haplotypes, we would expect to detect a similar number of genetic clusters with both approaches. 

However, the number of clusters inferred by the de novo clustering algorithm (n = 4) was lower 

than the number of possible source populations for IRL and TRID identified in Chapter 2 (n = 6 - 

Stahelin et al., (2022)). A lower number of clusters for green turtle populations in the Atlantic 

Ocean has also been suggested when using microsatellites and mtDNA data (Naro-Maciel, et al., 

2014). Fine-scale genetic differentiation of rookeries using longer fragments is useful for 

designation of regional management units (RMUs - (Shamblin et al., 2012)), but might be 

insufficient for evaluation of broad-scale connectivity and dispersal (Lovette et al., 2004). 

I identified a shift in the composition of TRID aggregation in recent years, currently having a 

majority of individuals from Cluster 1 instead of Cluster 3 (Table 4.4). A similar pattern was 

reported in Chapter 2 (Stahelin et al., 2022), where the Tamaulipas rookery, Mexico, became the 

major contributor to the TRID mixed stock aggregation (Figure 2.4). This could be a strong 

indication that Cluster 1 includes the Mexican rookeries, while Cluster 3 includes the central 

Florida ones (Table 4.4). Analysis of mtDNA haplotypes indicate a great similarity between 

rookeries in Florida, USA, and Mexico, which is also observed in the DAPC and PCA results 

between Clusters 1 and 3 (Figure 4.2). Sea turtles at the TRID site are smaller (and younger) than 

the ones found in the IRL, with almost no overlap in size classes between these areas (Ehrhart et 

al., 2007; Redfoot & Ehrhart, 2013). Size classes at TRID indicate that this is the type of habitat 

that juvenile green turtles first occupy after recruitment from offshore. Most of the early dispersal 

stage green turtles captured in the Gulf of Mexico originated from rookeries along the Mexican 

coast (Phillips et al., 2022; Shamblin et al., 2018, 2023). A number of these individuals leave the 
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Gulf of Mexico into the western North Atlantic ocean towards the Sargasso sea (Mansfield et al., 

2021; Putman & Mansfield, 2015). A change in genetic composition observed at TRID might be 

a few years in advance from being observed in other locations, like the IRL. Assuming Cluster 1 

indeed belongs to the Tamaulipas rookery, this can be a strong indication of a broader shift in 

juvenile genetic composition following recent growth in nesting populations observed in the 

region, including the Tamaulipas rookery (Chaloupka et al., 2008; Pineda & Rocha, 2016; Stahelin 

et al., 2022). 

Evaluating the mtDNA haplotype composition of individuals from Cluster 2 revealed that all three 

individuals have haplotype CM-A8.1, which is the dominant variant in the South Atlantic and 

West African rookeries (Bjorndal et al., 2006; Encalada et al., 1996; Formia et al., 2006, 2007). 

The occurrence of haplotype CM-A8.1 in central Florida samples could be explained by the 

dispersal of individuals that initially followed the Atlantic South Equatorial current (Figure 4.6), 

which flows west in the South Atlantic and splits into two currents at the northeast region of Brazil: 

the south branch turns into the Brazil current flowing south along the Brazilian coast, and the north 

branch becomes the North Brazil current that flows towards the Caribbean (Talley et al., 2011). 

The North Brazil current could then facilitate the dispersal of individuals into the Caribbean, 

leading to small proportions of animals from the South Atlantic region at the east central Florida 

coast (Mansfield et al., 2017; Naro-Maciel et al., 2017; Proietti et al., 2014). Alternatively, a sea 

turtle farm in the Cayman Islands established a captive breeding program in 1968 with individuals 

from multiple rookeries (Ascension Island, Costa Rica, Guyana, and Suriname - Barbanti et al., 

(2019)). Annually, the captive breeding program releases the excess individuals from their stocks 

into the ocean (Barbanti et al., 2019). Still, only a fraction of the individuals have been genotyped 
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to determine the genetic composition of the individuals released in the wild. Haplotype CM-A8 is 

found in > 83% of females reproducing in Ascension Island (Formia et al., 2007) and ~2% of 

females from Suriname (Bjorndal et al., 2005), two of the source populations for the farm’s 

breeding stocks. For instance, haplotype CM-A8 was previously found in one nesting female found 

at Hutchinson Island, Florida (Shamblin, et al., 2015), and one nesting female from the MB rookery 

was reported earlier in this chapter. It is possible, therefore, that both in-water juveniles and nesting 

females found in Florida with haplotype CM-A8 originated from the captive breeding program in 

the Cayman Islands and their occurrence in Florida sites might have been facilitate by marine 

currents. 

 

Figure 4.6: Marine currents in the Atlantic Ocean with potential to impact dispersal of sea turtles in the 

Greater Caribbean. Red triangles represent main green turtle rookeries. Blue arrows represent marine 

currents. Marine currents adapted from Talley et al., (2011). 
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Gene flow between all identified clusters is well supported by the coalescent model (Figure 4.5), 

and has been previously identified for other populations (FitzSimmons et al., 1997; Karl et al., 

1992; Naro-Maciel et al., 2014; Roberts et al., 2004; van der Zee et al., 2021). Migration could 

help explain low levels of differentiation observed here and the occurrence of individuals from 

multiple clusters within the MB rookery (Table 4.4). However, the presence of Cluster 4 in the 

MB rookery puts into question the cluster assignment made so far. One hypothesis could be that 

Cluster 4 population encompasses Tortuguero in Costa Rica, and maybe other rookeries from east 

Caribbean (Aves Island in Venezuela, and Galibi in Suriname). It could be that a small group of 

individuals from Cluster 4 migrated to the peninsular Florida recently (during the population 

decline observed in the past century and could not be detected by coalescent models). Male-

mediated gene flow between populations has been discussed and previously identified 

(FitzSimmons, et al., 1997; Karl et al., 1992; Roberts et al., 2004), which could certainly be the 

case in my models, but the presence of individuals from multiple clusters in the MB samples raises 

the possibility for female migration as well. Therefore, it also plausible that Cluster 1 is in fact 

from Tortuguero and east Caribbean and re-populated the Peninsular Florida region in recent years. 

Both of these hypotheses could be supported by migration and well-established dispersal corridor 

between rookeries in the Northwest Atlantic and Caribbean. A better understanding of which, or 

if any, of the hypotheses detailed here is correct can be addressed by future studies using genomic 

analysis from multiple Caribbean rookeries. 

Data concerns and considerations 

Divergence times between the genetic clusters and estimates of effective population sizes for each 

cluster/population identified here differs from previous estimates for the species by nearly an order 
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of magnitude (see Fitak & Johnsen, 2018; Jensen et al., 2019; Naro-Maciel, et al., 2014; van der 

Zee et al., 2021; Vilaça et al., 2021). My estimates of time of divergence are much larger (i.e., 

events happened longer ago), and effective population sizes are much larger than previous studies. 

It is unclear the reason for such mismatch between results, as priors used and multiple data quality 

steps are similar. For instance, here I used the mutation rate of 1.2 x 10-8, the same used by Fitak 

& Johnsen, (2018), while Vilaça et al., (2021) used 7.9 x 10-9. Interestingly enough, van der Zee 

et al., (2021) tested the effect of mutation rate (between 1.2 x 10-8 and 7.9 x 10-9) and their results 

suggest that the difference in mutation rate is not sufficient to explain the variation observed here. 

One possibility might be due to issues I ran into during data quality and filtering steps of SNP data. 

Samples from the “old” time-period were removed from the dataset at a much higher rate than 

those from the “new” time-period. It is unclear why the sequencing quality of these samples was 

much reduced, but it could be associated with the storage method before DNA extraction (Ballare 

et al., 2019). Skin samples were preserved in ethanol at room temperature, and red blood cell 

samples were either frozen at -20ºC or stored at room temperature on lysis buffer (see Methods in 

Chapter 2 - (Stahelin et al., 2022)). However, as these samples were stored for 20+ years, 

fluctuations in storage conditions over the years may have contributed to a general decrease in 

DNA quality. Overall, samples from the “old” time-periods had a lower depth of sequencing, 

leading to a higher rate of missing calls across loci. 

Another possible bias could be related to loci and sample filtering steps. I found that switching the 

order in which filters while keeping the same cutoff values for the filters (i.e., individuals with 

missing genotype data [--mind], minor allele frequency [--maf], and SNPs with missing 
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genotyping rate [--geno]), changed considerably the number of individuals and SNPs filtered. The 

order in which these filters are applied is inconsistent between, for instance, the PLINK software 

manual (Purcell et al., 2007) and previously published papers (Agudelo et al., 2022; Mastrochirico-

Filho et al., 2021), without a clear explanation for that choice in all cases. Users may have been 

applying the filters in multiple orders for not knowing of impacts on the final dataset. Applying 

filters for individuals with high rate of genotype data missing will generate a dataset with a higher 

lower number of individuals with many SNPs shared between samples. On the other hand, filtering 

for loci with high data missing first, will generate a dataset with more individuals and fewer SNPs. 

This trade off seems obvious, but I have not found a study evaluating the impact of these choices 

on genetic structure of the resulting dataset. 

Conclusions 

The use of genomic tools should be the goal and standard practice in near future sea turtle 

assessments, as is the case for other organisms. A recent publication of reference genomes for most 

sea turtle species (Bentley et al., 2022) opened the possibility for a variety of studies regarding 

evolution, ecology, disease, and others. Next-generation sequencing has already been used recently 

to refine population structure and aspects of sea turtles’ ecology (Prakash et al., 2022; van der Zee 

et al., 2021; Vilaça et al., 2023; Vilaça et al., 2021), and certainly many more studies are coming 

out to improve our knowledge about their ecology. Conservation plans can benefit greatly from 

conservation genomics instead of conservation genetic studies, greatly improving the best-data-

available practice for managers (Nielsen et al., 2020). 
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Gene flow between populations in the Caribbean is highly supported by the coalescent models, 

with varying rates between them. This finding adds to the amount of data indicating that green sea 

turtle reproductive aggregations are interconnected, which is important for conservation planning. 

Continuous gene flow between regions and reproductive areas is critical for sea turtles’ persistence 

over time, improving population’s phenotypic plasticity to face an ever-changing environment. 

Finally, studies with long-term in-water data as this one should be encouraged and receive greater 

support from managing and funding agencies around the world. Understanding of dynamics in 

these mixed stock aggregations can certainly benefit sea turtle conservation plans. 
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CHAPTER 5: CONCLUSIONS 

This is the first study to evaluate changes in contributions to green sea turtle mixed stock 

aggregations in response to reproductive population growth (Chapter 2). In addition, I modified 

the standardly used many-to-many mixed stock model to incorporate distance between source 

populations (rookeries) and mixed stock aggregations. This approach weights rookery contribution 

estimates based on distance between rookeries and mixed-stock aggregations. Also, to date, this is 

the only study to evaluate in detail the impact of sample size and other metrics in mixed stock 

models estimates (Chapter 3). Finally, I used next-generation sequencing to understand dispersal 

patterns and assess connectivity between populations from the north Atlantic and Greater 

Caribbean (Chapter 4). 

Despite recent variations in many green turtle rookeries, mixed stock aggregations in the east coast 

of Central Florida have remained relatively constant in terms of their stock contribution over the 

past ~20 years (Chapter 2). The only site with a noticeable change was in the Trident Submarine 

Basin (TRID) mixed stock, where the Tamaulipas rookery in Mexico is the main contributor to 

juveniles in this area in recent years (2016 - 2018). Interestingly, a similar result was observed 

using the genomic data, with Cluster 1 becoming the most common source of individuals in TRID 

with nearly 60% of recent contributions (Chapter 4). The dispersal of juveniles from Mexican and 

other rookeries in the Caribbean matches the assumptions made in Chapter 2 when we included a 

distance matrix to weight mixed stock models estimates based on how far an individual would 

need to travel between their natal rookery and a mixed stock aggregation. 



91 

 

Mixed stock analysis is commonly used in sea turtle studies as a way to understand relationships 

between reproductive populations and in-water aggregations (Gaos et al., 2020; Medeiros et al., 

2019; Phillips et al., 2022; Shamblin et al., 2017; Stahelin et al., 2022). Besides helping address 

basic ecological questions, these models help conservation managers delineate conservation plans 

and identify protective actions within and between countries. Chapter 3 demonstrates how mixed 

stock models can be impacted by using biased sampling due to small sample sizes. Results from 

this dissertation allow me to make a few recommendations for future studies: (i) I strongly 

recommend incorporating distance or any other site-specific metric between rookeries and mixed 

stock aggregations (e.g., particle dispersal model probabilities) in mixed stock analyses; the use of 

the model introduced in Chapter 2 with a distance matrix can reduce credible intervals and make 

results more ecologically meaningful. I recommend the use of both (ii) higher resolution mtDNA 

markers (e.g., longer haplotypes) and (iii) larger sample sizes (> 150 samples) at mixed stock 

aggregations in order to improve model accuracy and reduce credible intervals (Chapter 3). Ideally, 

these three recommendations would be implemented simultaneously, but implementation of any 

or a combination of these in future studies will certainly improve model estimates of contribution 

from rookeries to mixed stock aggregations. Interpretation of mixed stock models has a higher 

chance of being ecologically incorrect if these recommendations are not followed, with unintended 

consequences for the conservation and recovery of these species.  

Gene flow between populations is important for adaptation to evolutionary pressures, but also for 

persistence of populations over time (Crispo, 2008). The coalescent model detailed in Chapter 4 

offers support for gene flow between all populations identified using the de novo Discriminant 

Analysis of Principal Components. This result agrees with previous assessments that indicated 
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different levels of gene flow between sea turtle populations (FitzSimmons, et al., 1997; Karl et al., 

1992; Roberts et al., 2004). More importantly, it provides insightful understanding that 

geographical reproductive areas could be shared by more than one genetic cluster (Table 4.3and 

Table 4.4 – Chapter 4). Use of genomic assessments and coalescent models in future studies is 

recommended as these tools can greatly improve our understanding of ecological aspects sea 

turtles distribution and their evolutionary history (Sovic et al., 2016, 2019). 

Finally, additional in-water sea turtle sampling studies should be encouraged and supported by 

managers and funding agencies. Sea turtles are, in general, late-maturing individuals (Casale et al., 

2011; Girondot et al., 2021; Seminoff, 2004; Turner Tomaszewicz et al., 2022), meaning that 

changes in foraging aggregations may take several years to start reflecting in rookeries. Constant 

monitoring of mixed stock aggregations can reduce the response time to a new threat and more 

effectively protect these species. Long-term datasets with enough samples to evaluate changes in 

populational parameters over time (like the ones used in this study) should, ideally, be maintained 

or established in several locations around the world to enhance our understanding of sea turtle 

dispersal and genetic connectivity. More importantly, researchers should aim to use larger datasets 

and genomic data to answer multiple ecological questions, pushing the bar of the ‘best available 

data’ forward for management decisions. Partnerships between conservation programs, managers, 

and funding agencies should be further encouraged, to improve knowledge in under-represented 

life stages, species, and areas for more robust and ecologically meaningful analyses.  
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Figure A.1: Distinct haplotype scenario scatter plot of credible interval width (in percentage points) of 

mixed stock model estimates as a function of mixed stock aggregations sample size. Colors represent fit 

lines from different rookery sample sizes. Dashed lines represent 95% confidence intervals. 

 

Figure A.2: Similar haplotype scenario scatter plot of credible interval width (in percentage points) of mixed 

stock model estimates as a function of mixed stock aggregations sample size. Colors represent fit lines from 

different rookery sample sizes. Dashed lines represent 95% confidence intervals. 
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Figure A.3: Shared haplotype scenario scatter plot of credible interval width (in percentage points) of mixed 

stock model estimates as a function of mixed stock aggregations sample size. Colors represent fit lines from 

different rookery sample sizes. Dashed lines represent 95% confidence intervals. 

 

Figure A.4: Distinct haplotype scenario scatter plot of absolute model estimate error (in percentage points) 

as a function of mixed stock aggregations sample size. Colors represent fit lines from different rookery 

sample sizes. Dashed lines represent 95% confidence intervals. 
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Figure A.5: Similar haplotype scenario scatter plot of model absolute estimate error (in percentage points) 

as a function of mixed stock aggregations sample size. Colors represent fit lines from different rookery 

sample sizes. Dashed lines represent 95% confidence intervals. 

 

Figure A.6: Shared haplotype scenario scatter plot of model absolute estimate error (in percentage points) 

as a function of mixed stock aggregations sample size. Colors represent fit lines from different rookery 

sample sizes. Dashed lines represent 95% confidence intervals.  
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Table B.1: Model selection table detailing all models for each scenario used to evaluate the relationship 

between credible interval width (CIW) and the different variables used in the simulations. MS_SSize = 

Mixed stock aggregation sample size, SP_SSize = Source population sample size, MS_PopSize = Mixed 

stock aggregation scaled population size, SP_PopSize = Source population scaled population size, 

MS_PropPSize = Ratio of sampled individuals in mixed stock aggregation in relationship to mixed stock 

aggregation population size, SP_PropPSize = Ratio of sampled individuals in source population in 

relationship to the source population population size. dAICc = Delta AICc, df = degrees of freedom. 

Model dAICc df Weight Scenario 

CIW ~ MS_SSize + MS_SSize2 0 4 1 Distinct 

CIW ~ MS_SSize * SP_SSize + MS_PopSize + SP_PopSize 15837.4 7 <0.001 Distinct 

CIW ~ MS_SSize * SP_SSize 15857.7 5 <0.001 Distinct 

CIW ~ MS_SSize * MS_PopSize + SP_SSize * SP_PopSize 15865.2 8 <0.001 Distinct 

CIW ~ MS_SSize + SP_SSize + MS_PopSize + SP_PopSize 15867.5 6 <0.001 Distinct 

CIW ~ MS_SSize + SP_SSize 15887.3 4 <0.001 Distinct 

CIW ~ MS_SSize 17822.7 3 <0.001 Distinct 

CIW ~ MS_SSize + MS_PopSize 17824.7 4 <0.001 Distinct 

CIW ~ MS_PropPSize + SP_PropPSize 90893.7 4 <0.001 Distinct 

CIW ~ MS_PropPSize * SP_PropPSize 90894.7 5 <0.001 Distinct 

CIW ~ MS_PropPSize 90984.6 3 <0.001 Distinct 

CIW ~ SP_SSize + SP_SSize2 108991.8 4 <0.001 Distinct 

CIW ~ SP_SSize + SP_PopSize 109099.8 4 <0.001 Distinct 

CIW ~ SP_SSize 109100 3 <0.001 Distinct 

CIW ~ SP_PropPSize 109999.1 3 <0.001 Distinct 

CIW ~ MS_SSize + MS_SSize2 0 4 1 Similar 

CIW ~ MS_SSize * MS_PopSize + SP_SSize * SP_PopSize 20298 8 <0.001 Similar 

CIW ~ MS_SSize + SP_SSize + MS_PopSize + SP_PopSize 20303 6 <0.001 Similar 

CIW ~ MS_SSize * SP_SSize + MS_PopSize + SP_PopSize 20305 7 <0.001 Similar 

CIW ~ MS_SSize + SP_SSize 20327 4 <0.001 Similar 

CIW ~ MS_SSize * SP_SSize 20328 5 <0.001 Similar 

CIW ~ MS_SSize 24052 3 <0.001 Similar 

CIW ~ MS_SSize + MS_PopSize 24053 4 <0.001 Similar 

CIW ~ MS_PropPSize + SP_PropPSize 114587 4 <0.001 Similar 

CIW ~ MS_PropPSize * SP_PropPSize 114588 5 <0.001 Similar 

CIW ~ MS_PropPSize 114666 3 <0.001 Similar 

CIW ~ SP_SSize + SP_SSize2 134360 4 <0.001 Similar 

CIW ~ SP_SSize + SP_PopSize 134678 4 <0.001 Similar 

CIW ~ SP_SSize 134698 3 <0.001 Similar 

CIW ~ SP_PropPSize 136837 3 <0.001 Similar 

CIW ~ MS_SSize + MS_SSize2 0 4 1 Shared 
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Model dAICc df Weight Scenario 

CIW ~ MS_SSize * SP_SSize + MS_PopSize + SP_PopSize 33839 7 <0.001 Shared 

CIW ~ MS_SSize * SP_SSize 33846 5 <0.001 Shared 

CIW ~ MS_SSize * MS_PopSize + SP_SSize * SP_PopSize 33890 8 <0.001 Shared 

CIW ~ MS_SSize + SP_SSize + MS_PopSize + SP_PopSize 33917 6 <0.001 Shared 

CIW ~ MS_SSize + SP_SSize 33924 4 <0.001 Shared 

CIW ~ MS_SSize 42943 3 <0.001 Shared 

CIW ~ MS_SSize + MS_PopSize 42945 4 <0.001 Shared 

CIW ~ MS_PropPSize + SP_PropPSize 176671 4 <0.001 Shared 

CIW ~ MS_PropPSize * SP_PropPSize 176673 5 <0.001 Shared 

CIW ~ MS_PropPSize 177362 3 <0.001 Shared 

CIW ~ SP_SSize + SP_SSize2 211119 4 <0.001 Shared 

CIW ~ SP_SSize 212024 3 <0.001 Shared 

CIW ~ SP_SSize + SP_PopSize 212025 4 <0.001 Shared 

CIW ~ SP_PropPSize 215200 3 <0.001 Shared 

 

Table B.2: Model selection table detailing all models for each scenario used to evaluate the relationship 

between absolute model estimate error (AMEE) and the different variables used in the simulations. 

MS_SSize = Mixed stock aggregation sample size, SP_SSize = Source population sample size, 

MS_PopSize = Mixed stock aggregation scaled population size, SP_PopSize = Source population scaled 

population size, MS_PropPSize = Ratio of sampled individuals in mixed stock aggregation in relationship 

to mixed stock aggregation population size, SP_PropPSize = Ratio of sampled individuals in source 

population in relationship to the source population population size. dAICc = Delta AICc, df = degrees of 

freedom. 

Model dAICc df Weight Scenario 

AMEE ~ MS_SSize + MS_SSize2 0 4 1 Distinct 

AMEE ~ MS_SSize * SP_SSize + MS_PopSize + SP_PopSize 507 7 <0.001 Distinct 

AMEE ~ MS_SSize * SP_SSize 513 5 <0.001 Distinct 

AMEE ~ MS_SSize * MS_PopSize + SP_SSize * SP_PopSize 525 8 <0.001 Distinct 

AMEE ~ MS_SSize + SP_SSize + MS_PopSize + SP_PopSize 526 6 <0.001 Distinct 

AMEE ~ MS_SSize + SP_SSize 532 4 <0.001 Distinct 

AMEE ~ MS_SSize + MS_PopSize 1014 4 <0.001 Distinct 

AMEE ~ MS_SSize 1021 3 <0.001 Distinct 

AMEE ~ MS_PropPSize + SP_PropPSize 8170 4 <0.001 Distinct 

AMEE ~ MS_PropPSize * SP_PropPSize 8171 5 <0.001 Distinct 

AMEE ~ MS_PropPSize 8237 3 <0.001 Distinct 

AMEE ~ SP_SSize + SP_SSize2 10296 4 <0.001 Distinct 

AMEE ~ SP_SSize 10361 3 <0.001 Distinct 
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Model dAICc df Weight Scenario 

AMEE ~ SP_SSize + SP_PopSize 10363 4 <0.001 Distinct 

AMEE ~ SP_PropPSize 10770 3 <0.001 Distinct 

AMEE ~ MS_SSize + MS_SSize2 0 4 1 Similar 

AMEE ~ MS_SSize * SP_SSize 535 5 <0.001 Similar 

AMEE ~ MS_SSize * SP_SSize + MS_PopSize + SP_PopSize 536 7 <0.001 Similar 

AMEE ~ MS_SSize + SP_SSize 542 4 <0.001 Similar 

AMEE ~ MS_SSize * MS_PopSize + SP_SSize * SP_PopSize 542 8 <0.001 Similar 

AMEE ~ MS_SSize + SP_SSize + MS_PopSize + SP_PopSize 544 6 <0.001 Similar 

AMEE ~ MS_SSize 882 3 <0.001 Similar 

AMEE ~ MS_SSize + MS_PopSize 883 4 <0.001 Similar 

AMEE ~ MS_PropPSize + SP_PropPSize 8320 4 <0.001 Similar 

AMEE ~ MS_PropPSize * SP_PropPSize 8322 5 <0.001 Similar 

AMEE ~ MS_PropPSize 8342 3 <0.001 Similar 

AMEE ~ SP_SSize + SP_SSize2 10524 4 <0.001 Similar 

AMEE ~ SP_SSize + SP_PopSize 10595 4 <0.001 Similar 

AMEE ~ SP_SSize 10596 3 <0.001 Similar 

AMEE ~ SP_PropPSize 10988 3 <0.001 Similar 

AMEE ~ MS_SSize + MS_SSize2 0 4 1 Shared 

AMEE ~ MS_SSize * SP_SSize + MS_PopSize + SP_PopSize 859 7 <0.001 Shared 

AMEE ~ MS_SSize * SP_SSize 880 5 <0.001 Shared 

AMEE ~ MS_SSize * MS_PopSize + SP_SSize * SP_PopSize 909 8 <0.001 Shared 

AMEE ~ MS_SSize + SP_SSize + MS_PopSize + SP_PopSize 911 6 <0.001 Shared 

AMEE ~ MS_SSize + SP_SSize 932 4 <0.001 Shared 

AMEE ~ MS_SSize + MS_PopSize 1814 4 <0.001 Shared 

AMEE ~ MS_SSize 1830 3 <0.001 Shared 

AMEE ~ MS_PropPSize + SP_PropPSize 16573 4 <0.001 Shared 

AMEE ~ MS_PropPSize * SP_PropPSize 16575 5 <0.001 Shared 

AMEE ~ MS_PropPSize 16735 3 <0.001 Shared 

AMEE ~ SP_SSize + SP_SSize2 21634 4 <0.001 Shared 

AMEE ~ SP_SSize + SP_PopSize 21806 4 <0.001 Shared 

AMEE ~ SP_SSize 21809 3 <0.001 Shared 

AMEE ~ SP_PropPSize 22490 3 <0.001 Shared 
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Table B.3: Model estimates and 95% confidence intervals from coalescent demographic model. Parameter 

names follow the labels used in Figure 4.5. MIGXY refers to the probability of one individual migrating 

from population X to population Y. 

Parameter Mean 2.50% 97.50% Type of estimate 

N1 550,410 408,638 660,872 Ne 

N1_1 1,815,202 1,347,651 2,179,495 Ne 

N1_2 5,644,881 4,190,899 6,777,754 Ne 

N2 526,413 352,534 619,161 Ne 

NAnc 265,410 177,742 312,172 Ne 

N3 506,422 430,889 583,649 Ne 

N4 536,892 388,712 623,722 Ne 

BOT1 830,878 602,310 943,898 Time in generations 

BOT2 76,546 59,973 100,239 Time in generations 

BOT3 34,830 26,969 53,599 Time in generations 

TDI1 830,878 602,310 943,898 Time in generations 

TDI2 202,959 134,516 259,354 Time in generations 

TDI3 76,546 59,973 100,239 Time in generations 

MIG12 (Current) 1.49E-06 8.20E-07 1.03E-05 Gene flow per generation 

MIG13 (Current) 4.23E-05 8.63E-06 7.55E-05 Gene flow per generation 

MIG14 (Current) 4.86E-05 1.23E-05 8.54E-05 Gene flow per generation 

MIG21 (Current) 1.40E-05 6.25E-06 3.33E-05 Gene flow per generation 

MIG23 (Current) 2.44E-05 6.66E-06 1.19E-04 Gene flow per generation 

MIG24 (Current) 4.81E-05 4.62E-06 8.18E-05 Gene flow per generation 

MIG31 (Current) 9.69E-06 2.04E-06 2.97E-05 Gene flow per generation 

MIG32 (Current) 8.50E-06 1.73E-06 1.31E-05 Gene flow per generation 

MIG34 (Current) 9.02E-06 3.42E-06 4.34E-05 Gene flow per generation 

MIG41 (Current) 2.05E-05 8.20E-06 5.93E-05 Gene flow per generation 

MIG42 (Current) 6.31E-06 2.20E-06 1.29E-05 Gene flow per generation 

MIG43 (Current) 2.80E-05 9.92E-06 5.77E-05 Gene flow per generation 

MIG13 (TDI2-TDI3) 4.65E-06 1.64E-06 8.23E-06 Gene flow per generation 

MIG31 (TDI2-TDI3) 2.28E-05 4.60E-06 5.58E-05 Gene flow per generation 
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