58 research outputs found

    Valorization of hydrolysis lignin from a spruce-based biorefinery by applying -valerolactone treatment

    Get PDF
    Hydrolysis lignin, i.e., the hydrolysis residue of cellulosic ethanol plants, was extracted with the green solvent γ-valerolactone (GVL). Treatments at 170–210 ◦C were performed with either non-acidified GVL/water mixtures (NA-GVL) or with mixtures containing sulfuric acid (SA-GVL). SA-GVL treatment at 210 ◦C resulted in the highest lignin solubilization (64% (w/w) of initial content), and 76% of the solubilized mass was regenerated by water induced precipitation. Regenerated lignins were characterized through compositional analysis with sulfuric acid, as well as using pyrolysis–gas chromatography/mass spectrometry (Py-GC/MS), high-performance size-exclusion chromatography (HPSEC), solid-state cross-polarization/magic angle spinning 13C nuclear magnetic resonance (CP/MAS 13C NMR) spectroscopy, 1 H–13C heteronuclear single-quantum coherence NMR (HSQC NMR), and Fourier-transform infrared (FTIR) spectroscopy. The characterization revealed that the main difference between regenerated lignins was their molecular weight. Molecular weight averages increased with treatment temperature, and they were higher and had broader distribution for SA-GVL lignins than for NA-GVL lignins.publishedVersio

    Spent mushroom substrates for ethanol production – Effect of chemical and structural factors on enzymatic saccharification and ethanolic fermentation of Lentinula edodes-pretreated hardwood

    Get PDF
    Spent mushroom substrates (SMS) from cultivation of shiitake (Lentinula edodes) on three hardwood species were investigated regarding their potential for cellulose saccharification and for ethanolic fermentation of the produced hydrolysates. High glucan digestibility was achieved during enzymatic saccharification of the SMSs, which was related to the low mass fractions of lignin and xylan, and it was neither affected by the relative content of lignin guaiacyl units nor the substrate crystallinity. The high nitrogen content in SMS hydrolysates, which was a consequence of the fungal pretreatment, was positive for the fermentation, and it ensured ethanol yields corresponding to 84–87% of the theoretical value in fermentations without nutrient supplementation. Phenolic compounds and acetic acid were detected in the SMS hydrolysates, but due to their low concentrations, the inhibitory effect was limited. The solid leftovers resulting from SMS hydrolysis and the fermentation residues were quantified and characterized for further valorisation

    Identification of benzoquinones in pretreated lignocellulosic feedstocks and inhibitory effects on yeast

    Get PDF
    Pretreatment of lignocellulosic biomass under acidic conditions gives rise to by-products that inhibit fermenting microorganisms. An analytical procedure for identification of p-benzoquinone (BQ) and 2,6-dimethoxybenzoquinone (DMBQ) in pretreated biomass was developed, and the inhibitory effects of BQ and DMBQ on the yeast Saccharomyces cerevisiae were assessed. The benzoquinones were analyzed using ultra-high performance liquid chromatographyelectrospray ionization-triple quadrupole-mass spectrometry after derivatization with 2,4-dinitrophenylhydrazine. Pretreatment liquids examined with regard to the presence of BQ and DMBQ originated from six different lignocellulosic feedstocks covering agricultural residues, hardwood, and softwood, and were produced through impregnation with sulfuric acid or sulfur dioxide at varying pretreatment temperature (165-204 degrees C) and residence time (6-20 min). BQ was detected in all six pretreatment liquids in concentrations ranging up to 6 mg/l, while DMBQ was detected in four pretreatment liquids in concentrations ranging up to 0.5 mg/l. The result indicates that benzoquinones are ubiquitous as by-products of acid pretreatment of lignocellulose, regardless of feedstock and pretreatment conditions. Fermentation experiments with BQ and DMBQ covered the concentration ranges 2 mg/l to 1 g/l and 20 mg/l to 1 g/l, respectively. Even the lowest BQ concentration tested (2 mg/l) was strongly inhibitory to yeast, while 20 mg/l DMBQ gave a slight negative effect on ethanol formation. This work shows that benzoquinones should be regarded as potent and widespread inhibitors in lignocellulosic hydrolysates, and that they warrant attention besides more well-studied inhibitory substances, such as aliphatic carboxylic acids, phenols, and furan aldehydes

    Identification of benzoquinones in pretreated lignocellulosic feedstocks and inhibitory effects on yeast

    No full text
    Pretreatment of lignocellulosic biomass under acidic conditions gives rise to by-products that inhibit fermenting microorganisms. An analytical procedure for identification of p-benzoquinone (BQ) and 2,6-dimethoxybenzoquinone (DMBQ) in pretreated biomass was developed, and the inhibitory effects of BQ and DMBQ on the yeast Saccharomyces cerevisiae were assessed. The benzoquinones were analyzed using ultra-high performance liquid chromatographyelectrospray ionization-triple quadrupole-mass spectrometry after derivatization with 2,4-dinitrophenylhydrazine. Pretreatment liquids examined with regard to the presence of BQ and DMBQ originated from six different lignocellulosic feedstocks covering agricultural residues, hardwood, and softwood, and were produced through impregnation with sulfuric acid or sulfur dioxide at varying pretreatment temperature (165-204 degrees C) and residence time (6-20 min). BQ was detected in all six pretreatment liquids in concentrations ranging up to 6 mg/l, while DMBQ was detected in four pretreatment liquids in concentrations ranging up to 0.5 mg/l. The result indicates that benzoquinones are ubiquitous as by-products of acid pretreatment of lignocellulose, regardless of feedstock and pretreatment conditions. Fermentation experiments with BQ and DMBQ covered the concentration ranges 2 mg/l to 1 g/l and 20 mg/l to 1 g/l, respectively. Even the lowest BQ concentration tested (2 mg/l) was strongly inhibitory to yeast, while 20 mg/l DMBQ gave a slight negative effect on ethanol formation. This work shows that benzoquinones should be regarded as potent and widespread inhibitors in lignocellulosic hydrolysates, and that they warrant attention besides more well-studied inhibitory substances, such as aliphatic carboxylic acids, phenols, and furan aldehydes

    Effects of operational conditions on auto-catalyzed and sulfuric-acid-catalyzed hydrothermal pretreatment of sugarcane bagasse at different severity factor

    No full text
    Bagasse, a major by-product of sugarcane-processing industries, has potential to play a significant role as feedstock for production of cellulosic ethanol, platform chemicals, and bio-based commodities. Pretreatment is essential for efficient processing of lignocellulosic feedstocks by biochemical conversion. In this work, auto catalyzed (A-HTP) and dilute sulfuric-acid-catalyzed (SA-HTP) hydrothermal pretreatment of sugarcane bagasse was investigated, setting the temperature (175-205 degrees C) and the time (4-51 min) in such a way that the severity factor (SF) was always maintained at one of three predetermined values (2.8, 3.8, and 4.8). The investigation covered the effects of different operational pretreatment conditions on (i) the formation of sugars and water-soluble bioconversion inhibitors, including newly discovered inhibitors such as formaldehyde and pbenzoquinone, in the pretreatment liquid, (ii) the chemical composition and recovery of constituents in the solid phase, as determined using two-step treatment with sulfuric acid, Py-GC/MS, and solid-state NMR, (iii) pseudo lignin formation, (iv) furan aldehydes in condensates from the gas phase, (v) enzymatic digestibility of pretreated solids, (vi) enzyme inhibition by pretreatment liquids, and (vii) fermentability of pretreatment liquids using Saccharomyces cerevisiae yeast. Glucose and xylose were the predominant sugars in pretreatment liquids from SAHTP and A-HTP, respectively. For A-HTP, the enzymatic digestibility of the pretreated solids was proportional to the SF, while for SA-HTP no clear trend was observed. The best enzymatic digestibility (above 80%) was achieved for A-HTP performed at SF 4.8. The highest total yields of glucose and xylose, the predominant sugars, were achieved for A-HTP at SF 3.8 and temperatures of 190 degrees C and 205 degrees C. The fermentability of the pretreatment liquids by Saccharomyces cerevisiae was lower for SA-HTP than for A-HTP. The investigation suggests that hydrothermal pretreatment of sugarcane bagasse can be performed with good results without addition of sulfuric acid, but that the conditions must be just harsh enough to almost quantitatively solubilize the hemicelluloses

    Factors affecting detoxification of softwood enzymatic hydrolysates using sodium dithionite

    No full text
    Conditioning of lignocellulosic hydrolysates with sulfur oxyanions, such as dithionite, is one of the most potent methods to improve the fermentability by counteracting effects of inhibitory by-products generated during hydrothermal pretreatment under acidic conditions. The effects of pH, treatment temperature, and dithionite dosage were explored in experiments with softwood hydrolysates, sodium dithionite, and Saccharomyces cerevisiae yeast. Treatments with dithionite at pH 5.5 or 8.5 gave similar results with regard to ethanol productivity and yield on initial glucose, and both were always at least ~20% higher than for treatment at pH 2.5. Experiments in the dithionite concentration range 5.0–12.5 mM and the temperature range 23–110◦ C indicated that treatment at around 75◦ C and using intermediate dithionite dosage was the best option (p ≤ 0.05). The investigation indicates that selection of the optimal temperature and dithionite dosage offers great benefits for the efficient fermentation of hydrolysates from lignin-rich biomass, such as softwood residues

    Hydrothermal Pretreatment of Wheat Straw: Effects of Temperature and Acidity on Byproduct Formation and Inhibition of Enzymatic Hydrolysis and Ethanolic Fermentation

    No full text
    Biochemical conversion of wheat straw was investigated using hydrothermal pretreatment, enzymatic saccharification, and microbial fermentation. Pretreatment conditions that were compared included autocatalyzed hydrothermal pretreatment at 160, 175, 190, and 205 °C and sulfuric-acid-catalyzed hydrothermal pretreatment at 160 and 190 °C. The effects of using different pretreatment conditions were investigated with regard to (i) chemical composition and enzymatic digestibility of pretreated solids, (ii) carbohydrate composition of pretreatment liquids, (iii) inhibitory byproducts in pretreatment liquids, (iv) furfural in condensates, and (v) fermentability using yeast. The methods used included two-step analytical acid hydrolysis combined with high-performance anion-exchange chromatography (HPAEC), HPLC, ultra-high performance liquid chromatography-electrospray ionization-triple quadrupole-mass spectrometry (UHPLC-ESI-QqQ-MS), and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Lignin recoveries in the range of 108–119% for autocatalyzed hydrothermal pretreatment at 205 °C and sulfuric-acid-catalyzed hydrothermal pretreatment were attributed to pseudolignin formation. Xylose concentration in the pretreatment liquid increased with temperature up to 190 °C and then decreased. Enzymatic digestibility was correlated with the removal of hemicelluloses, which was almost quantitative for the autocatalyzed hydrothermal pretreatment at 205 °C. Except for the pretreatment liquid from the autocatalyzed hydrothermal pretreatment at 205 °C, the inhibitory effects on Saccharomyces cerevisiae yeast were low. The highest combined yield of glucose and xylose was achieved for autocatalyzed hydrothermal pretreatment at 190 °C and the subsequent enzymatic saccharification that resulted in approximately 480 kg/ton (dry weight) raw wheat straw

    Hochleistungsbauelemente für Mittelspannungs-DC-Netze

    No full text
    • …
    corecore