98 research outputs found

    Full-length structural model of RET3 and SEC21 in COPI: identification of binding sites on the appendage for accessory protein recruitment motifs

    Get PDF
    COPI, a 600 kD heptameric complex (consisting of subunits α, ÎČ, Îł, ÎŽ, Δ, ζ, and ÎČâ€Č) “coatomer,” assembles non-clathrin-coated vesicles and is responsible for intra-Golgi and Golgi-to-ER protein trafficking. Here, we report the three-dimensional structures of the entire sequences of yeast Sec21 (Îł-COPI mammalian ortholog), yeast Ret3 (ζ-COPI mammalian ortholog), and the results of successive molecular dynamics investigations of the subunits and assembly based on a protein–protein docking experiment. The three-dimensional structures of the subunits in their complexes indicate the residues of the two subunits that impact on assembly, the conformations of Ret3 and Sec21, and their binding orientations in the complexed state. The structure of the appendage domain of Sec21, with its two subdomains—the platform and the ÎČ-sandwich, was investigated to explore its capacity to bind to accessory protein recruitment motifs. Our study shows that a binding site on the platform is capable of binding the Eps15 DPF and epsin DPW2 peptides, whereas the second site on the platform and the site on the ÎČ-sandwich subdomain were found to selectively bind to the amphiphysin FXDXF and epsin DPW1 peptides, respectively. Identifying the regions of both the platform and sandwich subdomains involved in binding each peptide motif clarifies the mechanism through which the appendage domain of Sec21 engages with the accessory proteins during the trafficking process of non-clathrin-coated vesicles

    The apoptotic machinery as a biological complex system: analysis of its omics and evolution, identification of candidate genes for fourteen major types of cancer, and experimental validation in CML and neuroblastoma

    Full text link

    Birds in the playground: Evaluating the effectiveness of an urban environmental education project in enhancing school children's awareness, knowledge and attitudes towards local wildlife.

    Get PDF
    Children nowadays, particularly in urban areas, are more disconnected from nature than ever before, leading to a large-scale "extinction of experience" with the natural world. Yet there are many potential benefits from children interacting with nature first-hand, including via outdoor learning opportunities. Urban environmental education programmes typically aim to increase awareness and knowledge of local biodiversity and to promote positive attitudes and behaviour towards the environment. However, limited research has been conducted evaluating to what extent these interventions achieve their goals. Here, we explore and assess the influence of a six-week bird-feeding and monitoring project conducted within school grounds ("Bird Buddies") on individual awareness, knowledge and attitudes towards birds by primary school children. This initiative was conducted across eight (sub-)urban primary schools within Brighton and Hove (UK), with 220 participating children (aged 7 to 10). Via pre- and post-project questionnaires, we found evidence for enhanced awareness of local biodiversity, alongside significant gains in both bird identification knowledge and attitudes, which were greatest for children with little prior exposure to nature. Many children expressed a keenness to continue improving the environmental value of their school grounds and to apply elements of the project at home. Student project evaluation scores were consistently positive. Mirroring this, participating teachers endorsed the project as a positive learning experience for their students. One year after the project, several schools were continuing to feed and watch birds. Collectively, the findings from this study highlight the multiple benefits that can be derived from engagement with a relatively short outdoor environmental activity. We therefore believe that such interventions, if repeated locally/longer term, could enhance children's experience with nature in urban settings with combined positive environmental impact

    The dynamics of expanding mangroves in New Zealand

    Get PDF
    In contrast to the global trend of mangrove decline, New Zealand mangroves are rapidly expanding, facilitated by elevated sediment inputs in coastal waters as a consequence of large-scale land use changes following European settlement. New Zealand mangroves are at the southern limit of the global mangrove extent, which limits the tree height of Avicennia marina var. australasica, the only mangrove species present. Mangroves in New Zealand thrive in the sheltered environments of infilling drowned river valleys with abundant supply of fine terrigenous sediments, showing various stages of mangrove succession and expansion dynamics. Bio-physical interactions and carbon dynamics in these expanding temperate mangrove systems show similarities to, but also differ from those in tropical mangrove forests, for instance due to the limited height and complexity of the mangrove communities. Likewise, ecosystem services provided by New Zealand mangroves deviate from those offered by tropical mangroves. In particular, the association of mangrove expansion with the accumulation of (the increased supply of) fine sediments and the consequent change of estuarine ecosystems, has provoked a negative perception of mangrove expansion and subsequently led to mangrove clearance. Over recent decades, a body of knowledge has been developed regarding the planning and decision making relating to mangrove removal, yet there are still effects that are unknown, for example with respect to the post-clearance recovery of the original sandflat ecosystems. In this chapter we discuss the dynamics of New Zealand’s expanding mangroves from a range of viewpoints, with the aim of elucidating the possible contributions of expanding mangroves to coastal ecosystem services, now and in the future. This chapter also reviews current policies and practice regarding mangrove removal in New Zealand and addresses the (un)known effects of mangrove clearance. These combined insights may contribute to the development of integrated coastal management strategies that recognise the full potential of expanding mangrove ecosystems
    • 

    corecore