297 research outputs found
A Fractionated Space Weather Base at L_5 using CubeSats and Solar Sails
The Sun–Earth L_5 Lagrange point is an ideal location for an operational space weather forecasting mission to provide early warning of Earth-directed solar storms (coronal mass ejections, shocks and associated solar energetic particles). Such storms can cause damage to power grids, spacecraft, communications systems and astronauts, but these effects can be mitigated if early warning is received. Space weather missions at L5 have been proposed using conventional spacecraft and chemical propulsion at costs of hundreds of millions of dollars. Here we describe a mission concept that could accomplish many of the goals at a much lower cost by dividing the payload among a cluster of interplanetary CubeSats that reach orbits around L5 using solar sails
The Holy Grail: A road map for unlocking the climate record stored within Mars' polar layered deposits
In its polar layered deposits (PLD), Mars possesses a record of its recent climate, analogous to terrestrial ice sheets containing climate records on Earth. Each PLD is greater than 2 ​km thick and contains thousands of layers, each containing information on the climatic and atmospheric state during its deposition, creating a climate archive. With detailed measurements of layer composition, it may be possible to extract age, accumulation rates, atmospheric conditions, and surface activity at the time of deposition, among other important parameters; gaining the information would allow us to “read” the climate record. Because Mars has fewer complicating factors than Earth (e.g. oceans, biology, and human-modified climate), the planet offers a unique opportunity to study the history of a terrestrial planet’s climate, which in turn can teach us about our own planet and the thousands of terrestrial exoplanets waiting to be discovered.
During a two-part workshop, the Keck Institute for Space Studies (KISS) hosted 38 Mars scientists and engineers who focused on determining the measurements needed to extract the climate record contained in the PLD. The group converged on four fundamental questions that must be answered with the goal of interpreting the climate record and finding its history based on the climate drivers.
The group then proposed numerous measurements in order to answer these questions and detailed a sequence of missions and architecture to complete the measurements. In all, several missions are required, including an orbiter that can characterize the present climate and volatile reservoirs; a static reconnaissance lander capable of characterizing near surface atmospheric processes, annual accumulation, surface properties, and layer formation mechanism in the upper 50 ​cm of the PLD; a network of SmallSat landers focused on meteorology for ground truth of the low-altitude orbiter data; and finally, a second landed platform to access ~500 ​m of layers to measure layer variability through time. This mission architecture, with two landers, would meet the science goals and is designed to save costs compared to a single very capable landed mission. The rationale for this plan is presented below.
In this paper we discuss numerous aspects, including our motivation, background of polar science, the climate science that drives polar layer formation, modeling of the atmosphere and climate to create hypotheses for what the layers mean, and terrestrial analogs to climatological studies. Finally, we present a list of measurements and missions required to answer the four major questions and read the climate record.
1. What are present and past fluxes of volatiles, dust, and other materials into and out of the polar regions?
2. How do orbital forcing and exchange with other reservoirs affect those fluxes?
3. What chemical and physical processes form and modify layers?
4. What is the timespan, completeness, and temporal resolution of the climate history recorded in the PLD
Carbene based photochemical molecular assemblies for solar driven hydrogen generation
Novel photocatalysts based on ruthenium complexes with NHC (N-heterocyclic carbene)-type bridging ligands have been prepared and structurally and photophysically characterised. The identity of the NHC-unit of the bridging ligand was established unambiguously by means of X-ray structural analysis of a heterodinuclear ruthenium–silver complex. The photophysical data indicate ultrafast intersystem crossing into an emissive and a non-emissive triplet excited state after excitation of the ruthenium centre. Exceptionally high luminescence quantum yields of up to 39% and long lifetimes of up to 2 μs are some of the triplet excited state characteristics. Preliminary studies into the visible light driven photocatalytic hydrogen formation show no induction phase and constant turnover frequencies that are independent on the concentration of the photocatalyst. In conclusion this supports the notion of a stable assembly under photocatalytic conditions
Improving Oral Hygiene Skills by Computer-Based Training: A Randomized Controlled Comparison of the Modified Bass and the Fones Techniques
Background: Gingivitis and other plaque-associated diseases have a high prevalence in western communities even though the majority of adults report daily oral hygiene. This indicates a lack of oral hygiene skills. Currently, there is no clear evidence as to which brushing technique would bring about the best oral hygiene skills. While the modified Bass technique is often recommended by dentists and in textbooks, the Fones technique is often recommended in patient brochures. Still, standardized comparisons of the effectiveness of teaching these techniques are lacking.
Methodology/Principal Findings: In a final sample of n=56 students, this multidisciplinary, randomized, examiner-blinded, controlled study compared the effects of parallel and standardized interactive computer presentations teaching either the Fones or the modified Bass technique. A control group was taught the basics of tooth brushing alone. Oral hygiene skills (remaining plaque after thorough oral hygiene) and gingivitis were assessed at baseline and 6, 12, and 28 weeks after the intervention. We found a significant groupĂ—time interaction for gingivitis (F(4/102)=3.267; p=0.016; e=0.957; ?2=0.114) and a significant main effect of group for oral hygiene skills (F(2/51)=7.088; p=0.002; ?2=0.218). Fones was superior to Bass; Bass did not differ from the control group. Group differences were most prominent after 6 and 12 weeks.
Conclusions/Significance: The present trial indicates an advantage of teaching the Fones as compared to the modified Bass technique with respect to oral hygiene skills and gingivitis. Future studies are needed to analyze whether the disadvantage of teaching the Bass technique observed here is restricted to the teaching method employed.
Trial Registration: German Clinical Trials Register http://www.drks.de/DRKS0000348
The Holy Grail: A road map for unlocking the climate record stored within Mars' polar layered deposits
In its polar layered deposits (PLD), Mars possesses a record of its recent climate, analogous to terrestrial ice sheets containing climate records on Earth. Each PLD is greater than 2 ​km thick and contains thousands of layers, each containing information on the climatic and atmospheric state during its deposition, creating a climate archive. With detailed measurements of layer composition, it may be possible to extract age, accumulation rates, atmospheric conditions, and surface activity at the time of deposition, among other important parameters; gaining the information would allow us to “read” the climate record. Because Mars has fewer complicating factors than Earth (e.g. oceans, biology, and human-modified climate), the planet offers a unique opportunity to study the history of a terrestrial planet’s climate, which in turn can teach us about our own planet and the thousands of terrestrial exoplanets waiting to be discovered.
During a two-part workshop, the Keck Institute for Space Studies (KISS) hosted 38 Mars scientists and engineers who focused on determining the measurements needed to extract the climate record contained in the PLD. The group converged on four fundamental questions that must be answered with the goal of interpreting the climate record and finding its history based on the climate drivers.
The group then proposed numerous measurements in order to answer these questions and detailed a sequence of missions and architecture to complete the measurements. In all, several missions are required, including an orbiter that can characterize the present climate and volatile reservoirs; a static reconnaissance lander capable of characterizing near surface atmospheric processes, annual accumulation, surface properties, and layer formation mechanism in the upper 50 ​cm of the PLD; a network of SmallSat landers focused on meteorology for ground truth of the low-altitude orbiter data; and finally, a second landed platform to access ~500 ​m of layers to measure layer variability through time. This mission architecture, with two landers, would meet the science goals and is designed to save costs compared to a single very capable landed mission. The rationale for this plan is presented below.
In this paper we discuss numerous aspects, including our motivation, background of polar science, the climate science that drives polar layer formation, modeling of the atmosphere and climate to create hypotheses for what the layers mean, and terrestrial analogs to climatological studies. Finally, we present a list of measurements and missions required to answer the four major questions and read the climate record.
1. What are present and past fluxes of volatiles, dust, and other materials into and out of the polar regions?
2. How do orbital forcing and exchange with other reservoirs affect those fluxes?
3. What chemical and physical processes form and modify layers?
4. What is the timespan, completeness, and temporal resolution of the climate history recorded in the PLD
- …