1,983 research outputs found

    Microwave scattering and emission properties of large impact craters on the surface of Venus

    Get PDF
    Many of the impact craters on Venus imaged by the Magellan synthetic aperture radar (SAR) have interior floors with oblique incidence angle backscatter cross sections 2 to 16 times (3 dB to 12 dB) greater than the average scattering properties of the planet's surface. Such high backscatter cross sections are indicative of a high degree of wavelength-scale surface roughness and/or a high intrinsic reflectivity of the material forming the crater floors. Fifty-three of these (radar) bright floored craters are associated with 93 percent of the parabolic-shaped radar-dark features found in the Magellan SAR and emissivity data, features that are thought to be among the youngest on the surface of Venus. It was suggested by Campbell et al. that either the bright floors of the parabolic feature parent craters are indicative of a young impact and the floor properties are modified with time to a lower backscatter cross section or that they result from some property of the surface or subsurface material at the point of impact or from the properties of the impacting object. As a continuation of earlier work we have examined all craters with diameters greater than 30 km (except 6 that were outside the available data) so both the backscatter cross section and emissivity of the crater floors could be estimated from the Magellan data

    A Conceptual Design Study on the Application of Liquid Metal Heat Transfer Technology to the Solar Thermal Power Plant

    Get PDF
    Alkali metal heat transfer technology was used in the development of conceptual designs for the transport and storage of sensible and latent heat thermal energy in distributed concentrator, solar Stirling power conversion systems at a power level of 15 kWe per unit. Both liquid metal pumped loop and heat pipe thermal transport were considered; system configurations included: (1) an integrated, focal mounted sodium heat pipe solar receiver (HPSR) with latent heat thermal energy storage; (2) a liquid sodium pumped loop with the latent heat storage, Stirling engine-generator, pump and valves located on the back side of the concentrator; and (3) similar pumped loops serving several concentrators with more centralized power conversion and storage. The focus mounted HPSR was most efficient, lightest and lowest in estimated cost. Design confirmation testing indicated satisfactory performance at all angles of inclination of the primary heat pipes to be used in the solar receiver

    A Conceptual Design Study of a High Temperature Solar Thermal Receiver

    Get PDF
    A conceptual design was made for a solar thermal receiver capable of operation in the 1095 to 1650 C (2000 to 3000 F) temperature range. This receiver is designed for use with a two-axis paraboloidal concentrator in the 25 to 150 kW sub t power range, and is intended for industrial process heat, Brayton engines, or chemical/fuels reactions. Three concepts were analyzed parametrically. One was selected for conceptual design. Its key feature is a helical coiled tube of sintered silicon nitride which serves as the heat exchanger between the incident solar radiation and the working fluid. A mechanical design of this concept was prepared, and both thermal and stress analysis performed. The analysis showed good performance, low potential cost in mass production, and adaptability to both Brayton cycle engines and chemical/fuels production

    The formation of the first galaxies and the transition to low-mass star formation

    Full text link
    The formation of the first galaxies at redshifts z ~ 10-15 signaled the transition from the simple initial state of the universe to one of ever increasing complexity. We here review recent progress in understanding their assembly process with numerical simulations, starting with cosmological initial conditions and modelling the detailed physics of star formation. In this context we emphasize the importance and influence of selecting appropriate initial conditions for the star formation process. We revisit the notion of a critical metallicity resulting in the transition from primordial to present-day initial mass functions and highlight its dependence on additional cooling mechanisms and the exact initial conditions. We also review recent work on the ability of dust cooling to provide the transition to present-day low-mass star formation. In particular, we highlight the extreme conditions under which this transition mechanism occurs, with violent fragmentation in dense gas resulting in tightly packed clusters.Comment: 16 pages, 7 figures, appeared in the conference proceedings for IAU Symposium 255: Low-Metallicity Star Formation: From the First Stars to Dwarf Galaxies, a high resolution version (highly recommended) can be found at http://www.ita.uni-heidelberg.de/~tgreif/files/greif08.pd

    Open questions in the study of population III star formation

    Full text link
    The first stars were key drivers of early cosmic evolution. We review the main physical elements of the current consensus view, positing that the first stars were predominantly very massive. We continue with a discussion of important open questions that confront the standard model. Among them are uncertainties in the atomic and molecular physics of the hydrogen and helium gas, the multiplicity of stars that form in minihalos, and the possible existence of two separate modes of metal-free star formation.Comment: 15 pages, 2 figures. To appear in the conference proceedings for IAU Symposium 255: Low-Metallicity Star Formation: From the First Stars to Dwarf Galaxie

    Suzaku Observations of Local Ultraluminous Infrared Galaxies

    Full text link
    We report the results from our analysis of {\it Suzaku} XIS (0.5-10 keV) and HXD/PIN (15-40 keV) observations of five well-known local ULIRGs: {\em IRAS} F05189-2524, {\em IRAS} F08572+3915, Mrk 273, PKS 1345+12, and Arp 220. The XIS observations of F05189-2524 and Mrk 273 reveal strong iron lines consistent with Fe Kα\alpha and changes in spectral shapes with respect to previous {\it Chandra} and {\it XMM-Newton} observations. Mrk 273 is also detected by the HXD/PIN at \sim1.8-σ\sigma. For F05189-2524, modeling of the data from the different epochs suggests that the change in spectral shape is likely due to the central source switching off, leaving behind a residual reflection spectrum, or an increase in the absorbing column. An increase in the covering fraction of the absorber can describe the spectral variations seen in Mrk 273, although a reduction in the intrinsic AGN luminosity cannot be formally ruled out. The {\it Suzaku} spectra of Mrk 273 are well fit by a ~94% covering fraction model with a column density of 1024\sim10^{24} cm2^{-2}. The absorption-corrected log[L210keVL_{\rm 2-10 keV} / LIRL_{\rm IR}] ratio is consistent with those found in PG Quasars. The 0.5-10 keV spectrum of PKS 1345+12 and Arp 220 seem unchanged from previous observations and their hard X-ray emission is not convincingly detected by the HXD/PIN. The large column density derived from CO observations and the large equivalent width of an ionized Fe line in Arp 220 can be reconciled by an ionized reflection model. F08572+3915 is undetected in both the XIS and HXD/PIN, but the analysis of unpublished {\em Chandra} data provides a new measurement at low energies.Comment: 37 pages including 4 tables and 10 figures. Accepted for publication in ApJ. It is tentatively scheduled to appear in the January 20, 2009 issue of Ap

    Dynamic communities in multichannel data: An application to the foreign exchange market during the 2007--2008 credit crisis

    Full text link
    We study the cluster dynamics of multichannel (multivariate) time series by representing their correlations as time-dependent networks and investigating the evolution of network communities. We employ a node-centric approach that allows us to track the effects of the community evolution on the functional roles of individual nodes without having to track entire communities. As an example, we consider a foreign exchange market network in which each node represents an exchange rate and each edge represents a time-dependent correlation between the rates. We study the period 2005-2008, which includes the recent credit and liquidity crisis. Using dynamical community detection, we find that exchange rates that are strongly attached to their community are persistently grouped with the same set of rates, whereas exchange rates that are important for the transfer of information tend to be positioned on the edges of communities. Our analysis successfully uncovers major trading changes that occurred in the market during the credit crisis.Comment: 8 pages, 6 figures, accepted for publication in Chao

    Recruitment, growth and mortality of an Antarctic hexactinellid sponge, Anoxycalyx joubini.

    Get PDF
    Polar ecosystems are sensitive to climate forcing, and we often lack baselines to evaluate changes. Here we report a nearly 50-year study in which a sudden shift in the population dynamics of an ecologically important, structure-forming hexactinellid sponge, Anoxycalyx joubini was observed. This is the largest Antarctic sponge, with individuals growing over two meters tall. In order to investigate life history characteristics of Antarctic marine invertebrates, artificial substrata were deployed at a number of sites in the southern portion of the Ross Sea between 1967 and 1975. Over a 22-year period, no growth or settlement was recorded for A. joubini on these substrata; however, in 2004 and 2010, A. joubini was observed to have settled and grown to large sizes on some but not all artificial substrata. This single settlement and growth event correlates with a region-wide shift in phytoplankton productivity driven by the calving of a massive iceberg. We also report almost complete mortality of large sponges followed over 40 years. Given our warming global climate, similar system-wide changes are expected in the future

    MAX 4 and MAX 5 CMB anisotropy measurement constraints on open and flat-Lambda CDM cosmogonies

    Full text link
    We account for experimental and observational uncertainties in likelihood analyses of cosmic microwave background (CMB) anisotropy data from the MAX 4 and MAX 5 experiments. These analyses use CMB anisotropy spectra predicted in open and spatially-flat Lambda cold dark matter cosmogonies. Amongst the models considered, the combined MAX data set is most consistent with the CMB anisotropy shape in Omega_0 ~ 0.1-0.2 open models and less so with that in old (t_0 >~ 15 - 16 Gyr, i.e., low h), high baryon density (Omega_B >~ 0.0175/h^2), low density (Omega_0 ~ 0.2 - 0.4), flat-Lambda models. The MAX data alone do not rule out any of the models we consider at the 2-sigma level. Model normalizations deduced from the combined MAX data are consistent with those drawn from the UCSB South Pole 1994 data, except for the flat bandpower model where MAX favours a higher normalization. The combined MAX data normalization for open models with Omega_0 ~ 0.1-0.2 is higher than the upper 2-sigma value of the DMR normalization. The combined MAX data normalization for old (low h), high baryon density, low-density flat-Lambda models is below the lower 2-sigma value of the DMR normalization. Open models with Omega_0 ~ 0.4-0.5 are not far from the shape most favoured by the MAX data, and for these models the MAX and DMR normalizations overlap. The MAX and DMR normalizations also overlap for Omega_0 = 1 and some higher h, lower Omega_B, low-density flat-Lambda models.Comment: Latex, 37 pages, uses aasms4 styl
    corecore