41 research outputs found

    Investigation of the effects of the macrophysical and microphysical properties of cirrus clouds on the retrieval of optical properties: Results for FIRE 2

    Get PDF
    Due to the prevalence and persistence of cirrus cloudiness across the globe, cirrus clouds are believed to have an important effect on the climate. Stephens et al., (1990) among others have shown that the important factor determining how cirrus clouds modulate the climate is the balance between the albedo and emittance effect of the cloud systems. This factor was shown to depend in part upon the effective sizes of the cirrus cloud particles. Since effective sizes of cirrus cloud microphysical distributions are used as a basis of parameterizations in climate models, it is crucial that the relationships between effective sizes and radiative properties be clearly established. In this preliminary study, the retrieval of cirrus cloud effective sizes are examined using a two dimensional radiative transfer model for a cirrus cloud case sampled during FIRE Cirrus 11. The purpose of this paper is to present preliminary results from the SHSG model demonstrating the sensitivity of the bispectral relationships of reflected radiances and thus the retrieval of effective sizes to phase function and dimensionality

    An EOF Iteration Approach for Obtaining Homogeneous Radiative Fluxes from Satellites Observations

    Get PDF
    Conventional observations of climate parameters are sparse in space and/or in time and the representativeness of such information needs to be optimized. Observations from satellites provide improved spatial coverage than point observations however they pose new challenges for obtaining homogeneous coverage. Surface radiative fluxes, the forcing functions of the hydrologic cycle and biogeophysical processes, are now becoming available from global scale satellite observations. They are derived from independent satellite platforms and sensors that differ in temporal and spatial resolution and in the size of the footprint from which information is derived. Data gaps, degraded spatial resolution near boundaries of geostationary satellites, and different viewing geometries in areas of satellite overlap, could result in biased estimates of radiative fluxes. In this study, discussed will be issues related to the sources of inhomogeneity in surface radiative fluxes as derived from satellites; development of an approach to obtain homogeneous data sets; and application of the methodology to the widely used International Satellite Cloud Climatology Project (ISCCP) data that currently serve as a source of information for deriving estimates of surface and top of the atmosphere radiative fluxes. Introduced is an Empirical Orthogonal Function (EOF) iteration scheme for homogenizing the fluxes. The scheme is evaluated in several ways including comparison of the inferred radiative fluxes against ground observations, both before and after the EOF approach is applied. On the average, the latter reduces the rms error by about 2-3 W/m2

    Comparison of Different Global Information Sources Used in Surface Radiative Flux Calculation: Radiative Properties of the Surface

    Get PDF
    Direct estimates of surface radiative fluxes that resolve regional and weather-scale variabilty over the whole globe with reasonable accuracy have only become possible with the advent of extensive global, mostly satellite, datasets within the past couple of decades. The accuracy of these fluxes, estimated to be about 10-15 W per square meter is largely limited by the accuracy of the input datasets. The leading uncertainties in the surface fluxes are no longer predominantly induced by clouds but are now as much associated with uncertainties in the surface and near-surface atmospheric properties. This study presents a fuller, more quantitative evaluation of the uncertainties for the surface albedo and emissivity and surface skin temperatures by comparing the main available global datasets from the Moderate-Resolution Imaging Spectroradiometer product, the NASA Global Energy and Water Cycle Experiment Surface Radiation Budget project, the European Centre for Medium-Range Weather Forecasts, the National Aeronautics and Space Administration, the National Centers for Environmental Prediction, the International Satellite Cloud Climatology Project (ISCCP), the Laboratoire de Meteorologie Dynamique, NOAA/NASA Pathfinder Advanced Very High Resolution Radiometer project, NOAA Optimum Interpolation Sea Surface Temperature Analysis and the Tropical Rainfall Measuring Mission (TRMM) Microwave Image project. The datasets are, in practice, treated as an ensemble of realizations of the actual climate such that their differences represent an estimate of the uncertainty in their measurements because we do not possess global truth datasets for these quantities. The results are globally representative and may be taken as a generalization of our previous ISCCP-based uncertainty estimates for the input datasets. Surface properties have the primary role in determining the surface upward shortwave (SW) and longwave (LW) flux. From this study, the following conclusions are obtained. Although land surface albedos in the near near-infrared remain poorly constrained (highly uncertain), they do not cause too much error in total surface SW fluxes; the more subtle regional and seasonal variations associated with vegetation and snow are still on doubt. The uncertainty of the broadband black-sky SW albedo for land surface from this study is about 7%, which can easily induce 5-10 W per square meter uncertainty in (upwelling) surface SW flux estimates. Even though available surface (broadband) LW emissivity datasets differ significantly (3%-5% uncertainty), this disagreement is confined to wavelengths greater than 20 micrometers so that there is little practical effect (1-3 W per square meters) on the surface upwelling LW fluxes. The surface skin temperature is one of two leading factors that cause problems with surface LW fluxes. Even though the differences among the various datasets are generally only 2-4 K, this can easily cause 10-15 W per square meter uncertainty in calculated surface (upwelling) LW fluxes. Significant improvements could be obtained for surface LW flux calculations by improving the retrievals of (in order of decreasing importance): (1) surface skin temperature, (2) surface air and near-surface-layer temperature, (3) column precipitable water amount and (4) broadband emissivity. And for surface SW fluxes, improvements could be obtained (excluding improved cloud treatment) by improving the retrievals of (1) aerosols (from our sensitivity studies but not discussed in this work), and (2) surface (black-sky) albedo, of which, NIR part of the spectrum has much larger uncertainty

    A Comparison of Satellite Based, Modeled Derived Daily Solar Radiation Data with Observed Data for the Continental US

    Get PDF
    Many applications of simulation models and related decision support tools for agriculture and natural resource management require daily meteorological data as inputs. Availability and quality of such data, however, often constrain research and decision support activities that require use of these tools. Daily solar radiation (SRAD) data are especially problematic because the instruments require electronic integrators, accurate sensors are expensive, and calibration standards are seldom available. The Prediction Of Worldwide Energy Resources (NASA/POWER; power.larc.nasa.gov) project at the NASA Langley Research Center estimates daily solar radiation based on data that are derived from satellite observations of outgoing visible radiances and atmospheric parameters based upon satellite observations and assimilation models. The solar data are available for a global 1 degree x 1 degree coordinate grid. SRAD can also be estimated based on attenuation of extraterrestrial radiation (Q0) using daily temperature and rainfall data to estimate the optical thickness of the atmosphere. This study compares daily solar radiation data from NASA/POWER (SRADNP) with instrument readings from 295 stations (SRADOB), as well as with values that were estimated with the WGENR solar generator. WGENR was used both with daily temperature and precipitation records from the stations reporting solar data and records from the NOAA Cooperative Observer Program (COOP), thus providing two additional sources of solar data, SRADWG and SRADCO. Values of SRADNP for different grid cells consistently showed higher correlations (typically 0.85 to 0.95) with SRADOB data than did SRADWG or SRADCO for sites within the corresponding cells. Mean values of SRADOB, SRADWG and SRADNP for sites within a grid cell usually were within 1 MJm-2d-1 of each other, but NASA/POWER values averaged 1.1 MJm-2d-1 lower than SRADOB. The magnitude of this bias was greater at lower latitudes and during summer months and may be at least partially explained by assumptions in ambient aerosol properties. Overall, the NASA/POWER solar radiation data are a promising resource for regional modeling studies where realistic accounting of historic variation is required

    The Contribution of Solar Brightening to the US Maize Yield Trend

    Get PDF
    Predictions of crop yield under future climate change are predicated on historical yield trends1,2,3, hence it is important to identify the contributors to historical yield gains and their potential for continued increase. The large gains in maize yield in the US Corn Belt have been attributed to agricultural technologies4, ignoring the potential contribution of solar brightening (decadal-scale increases in incident solar radiation) reported for much of the globe since the mid-1980s. In this study, using a novel biophysical/empirical approach, we show that solar brightening contributed approximately 27% of the US Corn Belt yield trend from 1984 to 2013. Accumulated solar brightening during the post-flowering phase of development of maize increased during the past three decades, causing the yield increase that previously had been attributed to agricultural technology. Several factors are believed to cause solar brightening, but their relative importance and future outlook are unknown, making prediction of continued solar brightening and its future contribution to yield gain uncertain. Consequently, results of this study call into question the implicit use of historical yield trends in predicting yields under future climate change scenarios

    NASA Prediction of Worldwide Energy Resource High Resolution Meteorology Data For Sustainable Building Design

    Get PDF
    A primary objective of NASA's Prediction of Worldwide Energy Resource (POWER) project is to adapt and infuse NASA's solar and meteorological data into the energy, agricultural, and architectural industries. Improvements are continuously incorporated when higher resolution and longer-term data inputs become available. Climatological data previously provided via POWER web applications were three-hourly and 1x1 degree latitude/longitude. The NASA Modern Era Retrospective-analysis for Research and Applications (MERRA) data set provides higher resolution data products (hourly and 1/2x1/2 degree) covering the entire globe. Currently POWER solar and meteorological data are available for more than 30 years on hourly (meteorological only), daily, monthly and annual time scales. These data may be useful to several renewable energy sectors: solar and wind power generation, agricultural crop modeling, and sustainable buildings. A recent focus has been working with ASHRAE to assess complementing weather station data with MERRA data. ASHRAE building design parameters being investigated include heating/cooling degree days and climate zones

    Spatially heterogeneous land cover/land use and climatic risk factors of tick-borne feline cytauxzoonosis

    Get PDF
    Background: Feline cytauxzoonosis is a highly fatal tick-borne disease caused by a hemoparasitic protozoan, Cytauxzoon felis. This disease is a leading cause of mortality for cats in the Midwestern United States, and no vaccine or effective treatment options exist. Prevention based on knowledge of risk factors is therefore vital. Associations of different environmental factors, including recent climate were evaluated as potential risk factors for cytauxzoonosis using Geographic Information Systems (GIS). Methods: There were 69 cases determined to be positive for cytauxzoonosis based upon positive identification of C. felis within blood film examinations, tissue impression smears, or histopathologic examination of tissues. Negative controls totaling 123 were selected from feline cases that had a history of fever, malaise, icterus, and anorexia but lack of C. felis within blood films, impression smears, or histopathologic examination of tissues. Additional criteria to rule out C. felis among controls were the presence of regenerative anemia, cytologic examination of blood marrow or lymph node aspirate, other causative agent diagnosed, or survival of 25 days or greater after testing. Potential environmental determinants were derived from publicly available sources, viz., US Department of Agriculture (soil attributes), US Geological Survey (land-cover/landscape, landscape metrics), and NASA (climate). Candidate variables were screened using univariate logistic models with a liberal p value (0.2), and associations with cytauxzoonosis were modeled using a global multivariate logistic model (p<0.05). Spatial heterogeneity among significant variables in the study region was modeled using a geographically weighted regression (GWR) approach. Results: Total Edge Contrast Index (TECI), grassland-coverage, humidity conditions recorded during the 9th week prior to case arrival, and an interaction variable, “diurnal temperature range×percent mixed forest area” were significant risk factors for cytauxzoonosis in the study region. TECI and grassland areas exhibited significant regional differences in their effects on cytauxzoonosis outcome, whereas others were uniform. Conclusions: Land-cover areas favorable for tick habitats and climatic conditions that favor the tick life cycle are strong risk factors for feline cytauxzoonosis. Spatial heterogeneity and interaction effects between land-cover and climatic variables may reveal new information when evaluating risk factors for vector-borne diseases

    Annual Cycle of Cloud Forcing of Surface Radiation Budget

    Get PDF
    The climate of the Earth is determined by its balance of radiation. The incoming and outgoing radiation fluxes are strongly modulated by clouds, which are not well understood. The Earth Radiation Budget Experiment (Barkstrom and Smith, 1986) provided data from which the effects of clouds on radiation at the top of the atmosphere (TOA) could be computed (Ramanathan, 1987). At TOA, clouds increase the reflected solar radiation, tending to cool the planet, and decrease the OLR, causing the planet to retain its heat (Ramanathan et al., 1989; Harrison et al., 1990). The effects of clouds on radiation fluxes are denoted cloud forcing. These shortwave and longwave forcings counter each other to various degrees, so that in the tropics the result is a near balance. Over mid and polar latitude oceans, cloud forcing at TOA results in large net loss of radiation. Here, there are large areas of stratus clouds and cloud systems associated with storms. These systems are sensitive to surface temperatures and vary strongly with the annual cycle. During winter, anticyclones form over the continents and move to the oceans during summer. This movement of major cloud systems causes large changes of surface radiation, which in turn drives the surface temperature and sensible and latent heat released to the atmosphere

    The Effect of Cumulus Cloud Field Anisotropy on Domain-Averaged Solar Fluxes and Atmospheric Heating Rates

    Get PDF
    Cumulus clouds can become tilted or elongated in the presence of wind shear. Nevertheless, most studies of the interaction of cumulus clouds and radiation have assumed these clouds to be isotropic. This paper describes an investigation of the effect of fair-weather cumulus cloud field anisotropy on domain-averaged solar fluxes and atmospheric heating rate profiles. A stochastic field generation algorithm was used to produce twenty three-dimensional liquid water content fields based on the statistical properties of cloud scenes from a large eddy simulation. Progressively greater degrees of x-z plane tilting and horizontal stretching were imposed on each of these scenes, so that an ensemble of scenes was produced for each level of distortion. The resulting scenes were used as input to a three-dimensional Monte Carlo radiative transfer model. Domain-average transmission, reflection, and absorption of broadband solar radiation were computed for each scene along with the average heating rate profile. Both tilt and horizontal stretching were found to significantly affect calculated fluxes, with the amount and sign of flux differences depending strongly on sun position relative to cloud distortion geometry. The mechanisms by which anisotropy interacts with solar fluxes were investigated by comparisons to independent pixel approximation and tilted independent pixel approximation computations for the same scenes. Cumulus anisotropy was found to most strongly impact solar radiative transfer by changing the effective cloud fraction, i.e., the cloud fraction when the field is projected on a surface perpendicular to the direction of the incident solar beam

    Evaluating Surface Flux Results from CERES-FLASHFlux

    Get PDF
    The Fast Longwave and Shortwave Radiative Flux (FLASHFlux) data product was developed to provide a rapid release version of the Clouds and Earth's Radiant Energy System (CERES) results, which could be made available to the research and applications communities within one week of the satellite observations by exchanging some accuracy for speed of processing. Unlike standard CERES products, FLASHFlux does not maintain a long-term consistent record. Therefore the latest algorithm changes and input data can be incorporated into processing. FLASHFlux released Version3A (January 2013) and Version 3B (August 2014) which include the latest meteorological product from Global Modeling and Assimilation Office (GMAO), GEOS FP-IT (5.9.1), the latest spectral response functions and gains for the CERES instruments, and aerosol climatology based on the latest MATCH data. Version 3B included a slightly updated calibration and some changes to the surface albedo over snow/ice. Typically FLASHFlux does not reprocess earlier versions when a new version is released. The combined record of Time Interpolated Space Averaged (TISA) surface flux results from Versions3A and 3B for July 2012 to October 2015 have been compared to the ground-based measurements. The FLASHFlux results are also compared to two other CERES gridded products, SYN1deg and EBAF surface fluxes
    corecore