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Abstract  

 Many applications of simulation models and related decision support tools for agriculture and 24 
natural resource management require daily meteorological data as inputs. Availability and quality of such 

data, however, often constrain research and decision support activities that require use of these tools. 26 
Daily solar radiation (SRAD) data are especially problematic because the instruments require electronic 

integrators, accurate sensors are expensive, and calibration standards are seldom available. The Prediction 28 
Of Worldwide Energy Resources (NASA/POWER; power.larc.nasa.gov) project at the NASA Langley 

Research Center estimates daily solar radiation based on data that are derived from satellite observations 30 
of outgoing visible radiances and atmospheric parameters based upon satellite observations and 

assimilation models. The solar data are available for a global 1° x 1° coordinate grid. SRAD can also be 32 
estimated based on attenuation of extraterrestrial radiation (Q0) using daily temperature and rainfall data 

to estimate the optical thickness of the atmosphere. This study compares daily solar radiation data from 34 
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NASA/POWER (SRADNP) with instrument readings from 295 stations (SRADOB), as well as with values 

that were estimated with the WGENR solar generator. WGENR was used both with daily temperature and 2 
precipitation records from the stations reporting solar data and records from the NOAA Cooperative 

Observer Program (COOP), thus providing two additional sources of solar data, SRADWG
 and SRADCO. 4 

Values of SRADNP for different grid cells consistently showed higher correlations (typically 0.85 to 0.95) 

with SRADOB data than did SRADWG or SRADCO for sites within the corresponding cells. Mean values of 6 
SRADOB, SRADWG and SRADNP for sites within a grid cell usually were within 1 MJm-2d-1 of each other, 

but NASA/POWER values averaged 1.1 MJm-2d-1 lower than SRADOB. The magnitude of this bias was 8 
greater at lower latitudes and during summer months and may be at least partially explained by 

assumptions in ambient aerosol properties. Overall, the NASA/POWER solar radiation data are a 10 
promising resource for regional modeling studies where realistic accounting of historic variation is 

required.  12 
  

Abbreviations 14 
COOP, NOAA National Weather Service Cooperative Observer Program; NASA/POWER, NASA 

Prediction Of Worldwide Energy Resources; Q0, daily integral of extraterrestrial insolation; RMSE, root 16 
mean squared error; SRAD, daily integral of solar radiation; Tmax, daily maximum temperature; Tmin, daily 

minimum temperature 18 
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1. Introduction 

 2 
Many agricultural and natural resource management efforts involve spatial scales above the field 

and farm levels. Applications range from monitoring regional water use, to identifying promising zones 4 
for production of new crops, to targeting of specific cultivars or crop traits, to determining the potential 

impact of climate change and potential options for adaptation. Spatial assessments often consider climatic 6 
variation and increasingly, long-term records of daily weather data are required to examine climatic risks 

or trends related to climate change. Such analyses, however, are usually constrained by the availability 8 
and quality of the observed long-term meteorological data. Weather stations may not be available in the 

regions of interest, and individual stations may lack data for long time intervals. Weather data per se may 10 
show local variation due to positioning of the station and the instrument, instrument calibration drift, 

change in instrumentation, and other factors (Younes et al., 2005; Davey and Pielke, 2005). Solar 12 
radiation data have long been recognized as especially problematic (Durrenberger and Brazel, 1976; 

Stoffel et al., 2000). Radiation must be correctly integrated at low sun elevation angles and over all 14 
wavelengths. Radiometers using thermopiles are expensive, while lower-cost silicon pyranometers are 

less accurate. Both types of sensors require electronic circuitry to integrate readings over time and are 16 
sensitive to ambient temperatures. Sensor calibration is difficult because accurate reference values 

(besides 0) cannot be produced through simple techniques; thus sensors are usually cross-calibrated to 18 
radiometers whose calibrations are traceable to standards such as those maintained by the National 

Institute of Standards and Technology. 20 
The Prediction Of Worldwide Energy Resources (NASA/POWER) project at the NASA Langley 

Research Center provides daily data for surface solar radiation and other weather variables on a 1° x 1° 22 
geographic coordinate grid for the entire globe (Stackhouse, 2010a; See Table 1 for an overview of the 

data available from the POWER archive.).  The solar data are inferred from satellite observations of the 24 
outgoing top of atmosphere (TOA) radiances via an updated version of the Pinker and Laszlo (1992) 

radiative transfer based algorithm that was used to produce the fluxes for the Global Energy and Water 26 
Cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project solar algorithm v2.81 (Gupta et al., 

2006). Within this algorithm, a calculated TOA albedo is matched to an inferred TOA albedo from 28 
measured dark clear-sky background and instantaneous (every 3 hours) clear-sky and cloudy-sky satellite 

visible radiances using a radiative transfer model (through the use of lookup tables) on a 1°x1° degree 30 
grid.  Using the background clear-sky radiance and information about the atmosphere (e.g., water vapor 

and ozone) the radiative transfer model infers an absolute surface albedo for a particular time and 32 
location.  This step assumes a background aerosol and an assumed spectral albedo shape based upon the 

most prevalent surface type of the area. Then the surface albedo and the other input information are used 34 
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to infer the cloud and aerosol optical depths needed to match the observed clear and cloudy sky TOA 

albedos within a certain tolerance. The algorithm computes solar irradiance for clear and cloudy 2 
conditions using the inferred clear and cloud optical depths respectively and the other atmospheric 

information.  The total solar irradiance is computed as the weighted sum of the clear and cloud fluxes and 4 
is integrated over the day to produce the daily averaged fluxes. The NASA/GEWEX SRB solar data 

currently in the POWER archive span the time period from July 1, 1983 through December 2007.  6 
Appended to this time series are irradiances estimate from the NASA CERES (Clouds and Earth Radiant 

Energy System) FLASHFlux (Fast Longwave and SHortwave radiative Fluxes from CERES and 8 
MODIS) data sets (Stackhouse, 2010b) spanning from Jan 2008 through within one week of the current 

date (for algorithm description see, Kratz et al., 2010; the latter data are not considered in this paper).  10 
These data may be downloaded with other variables in a format compliant with the standards of the 

International Consortium for Agricultural Systems Applications (ICASA; www.ICASA.net, Hunt et al., 12 
200, 2006), which facilitates use in decision support tools such as the Decision Support System for 

Agrotechnology Transfer (DSSAT; Hoogenboom et al., 2010).  14 
Although initially developed for applications related to solar energy, energy consumption, and 

energy conservation, the NASA/POWER data appear suitable for agriculture and natural resource 16 
management (White et al., 2009; Bai et al., 2010). Their coarse geographic scale, however, may limit 

their usefulness: one degree of longitude is approximately 110 km at the equator and 80 km at 45° 18 
latitude. In assessing the effect of spatial resolution of precipitation and radiation data on regional yield 

forecasts, de Wit et al. (2005) concluded that a 50 × 50 km grid provided an adequate resolution. 20 
Similarly, for climate change research in the contiguous US, Janis et al. (2004) concluded that a network 

of 327 stations was adequate to monitor a 0.10°C decade-1 temperature trend. Besides spatial resolution, 22 
there remains the question of whether the data assimilation process introduced important bias or other 

error in the data.  24 
Faced with a lack of reliable solar radiation data, numerous researchers have opted for generating 

values using data on latitude, temperature and precipitation as inputs. The procedures first estimate the 26 
daily extraterrestrial insolation (Q0) based on latitude, date and the solar constant. This value is then 

reduced based on atmospheric transmittance or similar considerations (e.g., Richardson, 1981; Bristow 28 
and Campbell, 1984; Richardson and Wright, 1984; Hodges et al., 1985; Cooter and Dhakhwa, 1995; Liu 

and Scott, 2001). Transmittance is typically estimated from region-specific relations that consider the 30 
diurnal range of air temperature, which may further be varied depending on whether precipitation 

occurred that day. This paper compares the NASA/POWER solar radiation data with data from weather 32 
stations reporting instrument-based observations and from an implementation of the WGENR solar 

radiation generator (Garcia y Garcia and Hoogenboom, 2005; Garcia y Garcia et al., 2008).  34 



 5 

 

2. Materials and Methods  2 
 

Daily data for solar radiation from NASA/POWER (SRADNP) were obtained from the web site 4 
(power.larc.nasa.gov; Stackhouse, 2010a), which allows for downloading of the data in several ASCII 

based formats. The dataset covered the continental US on a 1° x 1° latitude and longitude grid, 6 
representing 867 grid cells. The time interval considered was from 1 Jul. 1983 to 31 Dec. 2004. The 

NASA/GEWEX SRB solar version v2.81, as identified above, corresponds to the dataset used in our 8 
previous comparison of temperature data (White et al., 2008).  

Observed solar radiation data (SRADOB) were obtained mainly from Internet sources such as state 10 
or regional climate networks (Supplement Table 1), which typically report data from automated weather 

stations using silicon pyranometers that output a current signal. Instantaneous values are registered and 12 
integrated digitally. For the widely used LI-200 Pyranometer1, LI-COR (2005) states that these sensors 

are calibrated against an Eppley Precision Spectral Pyranometer (PSP) using natural daylight, and the 14 
maximum absolute error is typically ± 3%, with a maximum of ± 5%. Datasets from stations were 

rejected if they provided less than two years of data between 1983 and 2004, in order to match the period 16 
represented in our NASA/POWER dataset. Data reported for several stations were clearly incorrect, 

including values much larger than Q0, negative values and values with a large systematic bias. Where 18 
detected, problem values were excluded based on the following criteria: SRADOB

 greater than Q0, 

SRADOB less than 0.2 MJm-2d-1, or time series of SRADOB showing large, systematic deviations from 20 
patterns observed in other years, values of Q0 or nearby locations. After the quality control process, a total 

of 295 stations were available, which were located in 181 grid cells of the NASA/POWER dataset (Fig. 22 
1). 

The WGENR program (Hodges et al., 1985; Garcia y Garcia and Hoogenboom, 2005), which 24 
uses the Richardson approach (Richardson and Wright, 1984) to estimate daily values of SRAD, was used 

to obtain two additional estimates of solar radiation from observed values for daily maximum and 26 
minimum temperatures and daily precipitation. The first estimate (SRADWG) was obtained using daily 

temperature and precipitation records from the datasets of the observed values of solar radiation and thus 28 
coincided with the source locations of the SRADOB. A parallel set of daily data (SRADCO) were estimated 

from daily temperature and precipitation records from 855 individual ground stations from the National 30 
Weather Service Cooperative Observer Program (COOP). The COOP stations were selected based on 

                                                 
1 Mention of a trademark, proprietary product, or vendor is for information only and does not constitute an 
endorsement by the USDA, NASA or the University of Georgia.  
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their being nearest to the centroid of a given grid cell of the NASA/POWER data set (White et al., 2008).  

Use of the COOP observations provided SRADCO for 855 grid cells of the NASA/POWER dataset. 2 
Comparisons of the solar radiation were based primarily on Pearson product-moment correlations 

calculated for daily data from individual stations, which were calculated using the Correlation procedure 4 
(PROC CORR) of the SAS 9.2 TS (SAS Institute Inc., Cary, NC, USA). Since annual variation in SRAD 

is dominated by readily calculated variation in Q0 (e.g., Bristow and Campbell, 1984), the analyses also 6 
considered relations with Q0. 

 8 
3. Results 

 10 
3.1. Comparisons at a single location 

 12 
A single, arbitrarily selected location, Immokalee, Florida (latitude 26.46°, elev. 11 m) was used 

to illustrate comparisons for one location. Based on correlations (Table 3), the SRADNP showed the best 14 
agreement with SRADOB, with a correlation of 0.86 (P < 0.001). While the overall good agreement is 

borne out by Fig. 2, values of SRADNP were consistently lower than for SRADOB, and the means of all 16 
daily values were 19.5 MJd-1m-2 for SRADOB and 18.0 MJd-1m-2 for SRADNP. Mean values of SRADWG 

and SRADCO were 18.0 and 18.1 MJd-1m-2, respectively. Values of SRADOB included 7 daily values out 18 
of 3151 that exceeded 95% of Q0, but excluding these values had minimal effect on the correlations and 

means. 20 
 

3.2. Comparisons over all sets of observed solar radiation data 22 
 

Across the 295 locations considered, SRADNP exhibited higher correlation with daily variation in 24 
SRADOB, with many correlations of 0.9 or higher (Fig. 1A and Table 3), than SRADWG or SRADCO. 

Correlations between SRADOB and SRADWG were typically between 0.8 and 0.9 (Fig. 1B and Table 3), 26 
while correlations between SRADOB and SRADCO were slightly lower (Table 3). Interestingly, 

correlations of Q0 with SRADOB were similar in value to those from the two weather generators (Table 3). 28 
Values of root mean square error (RMSE) for prediction of SRADOB by SRADNP were generally 2 to 3 

MJm-2d-1 (Fig. 3a) while RMSE values for SRADOB and SRADCO were 4 to 5 MJm-2d-1 (Fig. 3b and 3c). 30 
These results suggested that SRADNP data represented day-to-day variation in SRADOB better than values 

from WGENR, a conclusion also supported by density plots comparing SRADOB with SRADNP and 32 
SRADCO (Fig. 4). Thus, the data assimilation process used with the NASA/POWER data appeared 

superior to approaches that try to recreate variability in SRAD by considering daily maximum and 34 
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minimum temperatures and precipitation patterns (e.g., wet or dry days) as done in weather generators. As 

an aside, we note that Figure 4B also evidenced a problem with WGENR in that it appeared to produce an 2 
excess of values around 6 MJm-2d-1 and which coincided with days with rainfall (data not shown). 

Comparisons of means indicated that the NASA/POWER values were slightly lower than 4 
observed values, with a mean across all stations of 16.2 for SRADNP vs. 17.4 for SRADOB (Table 2 and 

Fig. 1C). This difference was greatest in the summer months and was more pronounced at lower latitudes 6 
(Fig. 5A and 5B). However, when expressed on a relative basis (Fig. 5C), the differences were more 

pronounced in winter months.  We note that SRADWG and SRADCO also tended to have mean values less 8 
that SRADOB (Table 3 and Fig 1D). 

A possible source of discrepancies in SRADNP values relative to SRADOB might relate to 10 
elevations of individual weather stations as compared to the elevation for NASA/POWER grid cell, which 

is the average of the topography associated with the 1-degree cell. Since the thickness of the atmosphere 12 
decreases with elevation, clear-sky transmittance increases with elevation. The elevation of individual 

weather stations differed from the average elevation of the associated grid cell from the NASA/POWER 14 
dataset by as much as 800 m. Comparisons of correlations of SRADOB with SRADNP showed a weak 

trend related to differences in elevation (Fig. 6A). There was a slight relation between elevation 16 
difference and difference in mean values of SRADOB and SRADNP (Fig. 6B), but given that the mean 

elevation difference was only 219 m (Table 3), the net bias due to elevation differences would be less 0.4 18 
MJm-2d-1. 

 20 
3.3 Comparisons of NASA/POWER data with data generated using NOAA COOP data  

 22 
The availability of the large set of data for paired NASA/POWER grid cells and NOAA COOP 

locations allowed a more detailed comparison for the continental US. The correlations between SRADNP 24 
and SRADCO

 were largest in the western USA and lowest in southeastern regions (Fig. 7A). The overall 

mean value of SRADNP was 15.0 MJd-1m-2 vs. 15.9 MJd-1m-2 for SRADCO (Table 2), again suggesting that 26 
values of SRADNP are lower than other estimates. Mean values of individual cells diverged by as much as 

3 MJ d-1m-2 (Fig. 7B). The best agreement for means occurred in California, Oregon and southern to 28 
eastern states. In the Rocky Mountain region, mean values of SRADCO were large relative to SRADNP, 

while SRADCO values were low for certain coastal regions. 30 
 

3.4 Data quality issues 32 
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In the initial analyses, several locations showed correlations between SRADOB and SRADNP that 

were less than 0.8, suggesting possible problems with the observed values. Data from Semmes, AL 2 
(Supplement Figure 1A) are indicative. For this location, SRADOB showed a steady decline from 1995 

through 2004, so the location was excluded from the analyses. Plots comparing SRADOB to Q0 proved 4 
difficult to evaluate visually, so data were re-plotted as the ratio of SRADOB to Q0 (Supplement Figure 2). 

Although not analyzed quantitatively in this study, it appeared that the maximum value of this ratio, 6 
which would correspond to very dry, clear-sky conditions, is approximately 0.8 (as assumed in WGENR), 

and this value is marked by a reference line on the graphs.  8 
For seven weather stations, low correlations of SRADOB with SRADNP were not associated with 

errors visible in time series plots of SRADOB, and the data showed mean values and patterns of variation 10 
similar to neighboring sites. Discrepancies in observation time are problematic in reporting of daily 

temperature data, so we tested whether correlations of SRADOB with SRADNP improved if it was assumed 12 
that the reported date of observation was a day later than the actual date. This assumption improved the 

correlations for these stations from a mean value 0.62 to a mean of 0.92 (Table 4), implying that the 14 
weather stations were reporting solar data with a one day offset (delay). 

 16 
4. Discussion 

 18 
The comparisons of the different sources of solar radiation data suggested that data from 

NASA/POWER reproduced variability at a daily time scale better than either set of generated values 20 
(Table 3 and Fig. 1). Comparisons of mean values (Tables 2 and 3 and Fig. 1), however, indicated that 

SRADNP values were often lower than observed values or values derived from WGENR. Figures 1, 5B, 22 
5C and 7 suggest that there is a regional component to the bias, although the variation in Fig. 7 also may 

result from bias in SRADCO values. The subsequent version of the NASA/POWER solar irradiance data 24 
set showed reductions in this bias that are directly attributable to a reduction in the background aerosol 

specification.  The new aerosol climatology based upon an upgraded NCAR Model of Atmospheric 26 
Transport and Chemistry (MATCH, Rasch et al., 1997) that resulted in the initial background aerosol 

optical depths being reduced from about 10% in the southeastern US to over 50% in the northwestern US. 28 
Although the background aerosol does not determine the final aerosol optical depth for a given space and 

time (as noted above), it governs the optimization of the match between the inferred and computed TOA 30 
albedos by constraining the surface albedo and in this case, it did lead systematically to an increase of 

solar irradiance values in the continental US.  Other potential sources of the bias were examined.  32 
Differences in elevations of station locations and of mean elevations of NASA/POWER grid cells 

appeared at best to explain only a small portion of the bias (Fig. 5B), and elevation differences also 34 
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appeared to have little influence on correlations between SRADOB and SRADNP (Fig. 5A). Another 

possible explanation for the bias concerns locations of the weather stations. Stations associated with 2 
airports or agricultural research centers may have been located in open areas with a clear field of view and 

low probability of cloud cover, while NASA/POWER grid cells may have included mountainous areas 4 
that experienced lower daily radiation due to greater cloud cover. Reflection from clouds can increase 

irradiance on a scale of minutes, but such effects tend to be cancelled out when the sun is obscured by 6 
clouds (Pfister et al., 2003) and thus seem unlikely to contribute to the bias. The occurrence of sporadic 

excessively high values of SRADOB also might have biased the mean value of SRADOB, or it may 8 
evidence a tendency of some automated instruments to overestimate SRAD. As a partial test for this 

problem, the mean of SRADOB was re-calculated after limiting all values of SRAD to a maximum of 0.8 10 
of Q0. The resulting mean was 17.25 MJm-2d-1 as compared to 17.32 MJm-2d-1 for the dataset as used in 

the rest of the paper, where values greater than Q0 were simply excluded. Thus, we suggest that errors in 12 
the prescription of the background aerosol for the GEWEX SRB solar irradiance v2.81 are the largest 

contributor to the noted systematic bias. 14 
The NASA/POWER data accurately reproduced the variability in solar radiation data, did not 

show major variation related to effects of elevation, and are readily available via the Internet for a time 16 
span from 1984 onward. They thus show excellent potential as a source of solar radiation data for diverse 

applications. However, the differences in mean values of SRADOB and SRADNP were a concern, but 18 
appear to be at least partially addressed in the GEWEX SRB solar v3.0 that is now available. If analysis 

of the new version largely explains the differences noted in this paper, the NASA/POWER data would 20 
appear to be superior to data from weather generators. 

A previous paper comparing NASA/POWER daily temperature data to COOP data found larger 22 
differences between these two sources (White et al., 2008). Several hypotheses can be forwarded to 

explain why the NASA/POWER solar data may show greater consistency than the temperature data. The 24 
first and foremost is that the estimate of solar radiation is far more dependent upon the structure and 

variability of the actual cloud fields than on accuracy in the underlying meteorological fields from the 26 
atmospheric assimilation data sets. Those cloud fields are directly observed by the satellite measurements.  

In fact, only the total water vapor profile is required for the solar radiation calculation and even 10-30% 28 
errors in the water vapor profile amount (which are probably correlated with surface temperature errors in 

the assimilation) correspond to solar radiation errors < 1%. Time of observation bias should have been 30 
less of a problem since observed solar radiation data presumably were based on a midnight to midnight 

integration period. Instrument siting errors may have less effect on solar radiation data than on 32 
temperature data. We emphasize that the algorithms used to create the datasets are subject to periodic 

review and improvement as noted by the effect of the improved aerosol inputs described above.  34 
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Additional improvements in the satellite calibration, sampling size and solar algorithm is anticipated and 

in 2012, it is planned to reduce the grid cell size to 0.5°. 2 
In working with datasets from automatic weather stations, accessed via the Internet, numerous 

problems with data quality were encountered. Together, these reinforce concerns over the management of 4 
daily weather data (e.g., Davy and Pielke, 2005; Holder et al., 2006; Pielke et al., 2007). Various data 

checking procedures exist, but they do not appear to be used by all data providers. The variable quality 6 
control provides another argument in favor of using a single, well-documented data source such as offered 

by NASA/POWER. 8 
 

5. Conclusions 10 
  

Considering the constraints inherent with its coarse grid size of 1° x 1° of latitude and longitude, 12 
the NASA/POWER solar radiation data compare favorably with data reported from automatic weather 

stations. In terms of representing historic variability on time scales of a few days, they appeared superior 14 
to values estimated using the WGENR weather generator. However, the means of the SRADNP data were 

often 1 to 2 MJm-2d-1 lower than SRADOB, and this discrepancy merits further investigation. 16 
NASA/POWER data are available for over 25 years with global coverage and are continuously 

being updated and improved. They represent a valuable source of solar radiation data for research 18 
concerned with regional to global geographic scales. 
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Captions for Figures 

Figure 1. Comparisons of correlations and differences between mean values of daily solar radiation data 2 
from different sources. A. Correlation between SRADOB and SRADNP. B. Correlation between 

SRADOB and SRADWG. C. Difference between SRADOB and SRADNP. D. Difference between 4 
SRADOB and SRADWG. 

 6 
Figure 2. Comparisons of solar radiation values (in units of MJm-2d-1) from the various sources of SRAD 

data for Immokalee, Florida from 1 Jan. 1998 to 31 Dec. 2004. The diagonal lines represent a 1:1 8 
relation. A. SRADOB vs SRADNP. B. SRADOB vs SRADWG. C. SRADOB vs SRADCO. D. SRADCO 

vs SRADNP. All values of r2 are significant at the P < 0.001 level. 10 
 

Figure 3. Root mean square errors (RMSE) for prediction of observed solar radiation from the other 12 
sources. A. SRADOB vs SRADNP. B. SRADOB vs SRADWG. C. SRADOB vs SRADCO. D. SRADOB 

vs Q0. 14 
 

Figure 4. Density plots comparing values of solar radiation (MJ m-2d-1) for 295 stations in the continental 16 
US. A. Weather station vs. NASA/POWER. B. Weather station vs. WGENR-generated. Count 

ranges are 1 = 1 to 10 paired values; 2 = 11 to 100; 3 = 101 to 1000; 4 = 1001 to 10,000. 18 
 

Figure 5. Annual variation in solar radiation based on seven-day averages. A. Daily means across all 20 
locations for SRADOB, SRADNP and SRADWG. B. Mean difference between SRADOB

 and 

SRADNP for five latitude bands from less than 30°N to greater than 45°N. C. Relative error 22 
[(SRADNP - SRADOB)/SRADOB] for the five latitude bands. 

 24 
Figure 6. Relation between difference in elevation of weather station and of the corresponding grid cell 

for the NASA/POWER dataset and two indicators of reliability for all stations. A. Correlation 26 
between SRADOB and SRADNP. B. Difference between mean of SRADOB and mean of SRADNP. 

 28 
Figure 7. Comparison of solar radiation data from NASA/POWER and estimated with WGEN using daily 

weather data from NOAA COOP stations. A. Correlation between the two sources for each grid 30 
cell. All correlations are significant at the P < .001 level. B. Mean difference between the NOAA 

COOP and NASA/POWER sources. 32 
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Supplement Fig. 1. Variation in solar radiation for five stations where the data showed patterns suggesting 

problems in instrumentation. A. Semmes, AL. B. Avondale, CO. C. Novelty, MO. D. 2 
Calipatria/Mulberry, CA. E. Manteca, CA. 

 4 
Supplement Fig. 2. Variation in the ratio of observed solar radiation to extraterrestrial (Q0) for five 

stations where the data showed patterns suggesting problems in instrumentation. The horizontal 6 
reference line at 0.8 indicates an approximate upper limit for any location. A. Semmes, AL. B. 

Avondale, CO. C. Novelty, MO. D. Calipatria/Mulberry, CA. E. Manteca, CA. 8 
 

10 
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Table 1.  

Daily meteorological variables available on a global 1° grid through the NASA/POWER project. 2 
 

Variable Source Time span Availability 

from present 

date  

Daily 

Maximum and 

minimum 

temperatures, 

Daily averaged 

temperature 

Goddard Earth Observing System 

(GEOS) assimilation model version 4  

 

Goddard Earth Observing System 

(GEOS) assimilation model version 5  

 

January, 1983 to December 

2007  

 

January 2008 to present 

online 

 

 

≤ 1 weekb 

Precipitation Satellite & ground observations from 

the Global Precipitation Climatology P 

project (GPCP) 

January, 1997 to presenta 

 

≤ 2 months 

 

Solar radiation Satellite observations 

  GEWEX SRB v3.0* 

    

FLASHFlux 

 

July 1983 to  

December 2007 

January 2008 to Present 

 

online 

 

≤ 1 week b 

Dewpoint 

temperature 

Goddard Earth Observing System 

(GEOS) assimilation model version 4  

 

Goddard Earth Observing System 

(GEOS) assimilation model version 5  

 

January, 1983 to December 

2007 

 

January 2008 to present 

online 

 

 

≤ 1 weekb 

a The most current GPCP file is August 2009.               4 
b Data files are updated daily. 

* v3.0 came available after the analysis presented here was completed; v2.81 corresponding to White et 6 
al., (2008) was used for this study. 

 8 
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Table 2.  

Mean, minimum and maximum values of solar radiation for the four solar data sources. The 2 
NASA/POWER and COOP data are for 855 locations on a 1° latitude and longitude grid covering 

the continental US and representing a time series from 1983 through 2005. Elevations correspond 4 
to mean values of grid cells for the NASA/POWER dataset and to reported values for COOP 

stations. 6 
 

Data source Mean Minimum Maximum 

Sites with automated stations (N = 295)    

Automated stations 17.4a 0.2a 43.0a 

NASA/POWER 16.2 0.3 34.1 

Generated based on station data 16.5 1.3 33.2 

Generated based on COOP data 16.8 1.3 33.2 

Difference between NASA/POWER and Automated 

Stations  

-1.2 -30.4 29.6 

Elevation difference (m): NASA/POWER –Automated 

Stations 

+219 -847 368 

    

Entire US based on COOP stations (N = 855)    

NASA/POWER 15.0 0.1 34.2 

Generated based on COOP data 15.9 1.3 33.2 

Difference between NASA/POWER and COOP-based data -0.9 -31.1 26.1 

Elevation difference (m): NASA/POWER - COOP 85 -1580 1270 
a Minimum and maximum values of SRAD from automated stations reflect minimum and maximum 8 

values imposed in processing data. 


