114 research outputs found

    Light, stratification and zooplankton as controlling factors for the spring development of phytoplankton in Lake Constance

    Get PDF
    The patterns of phytoplankton growth and decline during the spring bloom and the following clear-water phase in Lake Constance have been studied on the basis of cell counts with short-term sampling intervals and related to light climate, stratification and zooplankton pressure

    The first decade of oligotrophication of Lake Constance

    Get PDF
    In Lake Constance, after several decades of cutrophication, a decrease in phosphorus loading over the last decade has lead to a partial recovery from eutrophication. Here we analyse the shift in the taxonomic composition of phytoplankton during the first decade of oligotrophication in Lake Constance. During the 1980s, spring total P concentrations decreased from ca. 130 to less than 50 mgr·l–1. This decrease was reflected by an approximately proportional decrease in summer phytoplankton biomass while spring phytoplankton biomass seemed unresponsive. Major taxonomic changes occured during both growth seasons. In spring, the proportion of diatoms, green algae and Chrysophyta increased while the proportion of Cryptophyta decreased. The summer trend was very different: the relative importance of diatoms decreased and Cryptophyta and Chrysophyta increased, while Chlorophyta reached their peak around 1985. These trends are also analysed at the genus level. Comparison with taxonomic trends during the eutrophication period shows the expected reversals in most cases. Comparison with other lakes shows general similarities, with the notable exception that Planktothrix rubescens has never been important in Lake Constance. The increase of diatoms during spring is attributed to their improved competitive performance with increasing Si:P ratios. Their decrease during summer is explained by the increasing silicate removal from the epilimnion by increasing spring populations

    The periodicity of phytoplankton in Lake Constance (Bodensee) in comparison to other deep lakes of central Europe

    Get PDF
    Phytoplankton periodicity has been fairly regular during the years 1979 to 1982 in Lake Constance. Algal mass growth starts with the vernal onset of stratification; Cryptophyceae and small centric diatoms are the dominant algae of the spring bloom. In June grazing by zooplankton leads to a lsquoclear-water phasersquo dominated by Cryptophyceae. Algal summer growth starts under nutrient-saturated conditions with a dominance of Cryptomonas spp. and Pandorina morum. Depletion of soluble reactive phosphorus is followed by a dominance of pennate and filamentous centric diatoms, which are replaced by Ceratium hirundinella when dissolved silicate becomes depleted. Under calm conditions there is a diverse late-summer plankton dominated by Cyanophyceae and Dinobryon spp.; more turbulent conditions and silicon resupply enable a second summer diatom growth phase in August. The autumnal development leads from a Mougeotia — desmid assemblage to a diatom plankton in late autumn and winter. Inter-lake comparison of algal seasonality includes in ascending order of P-richness Königsee, Attersee, Walensee, Lake Lucerne, Lago Maggiore, Ammersee, Lake Zürich, Lake Geneva, Lake Constance. The oligotrophic lakes have one or two annual maxima of biomass; after the vernal maximum there is a slowly developing summer depression and sometimes a second maximum in autumn. The more eutrophic lakes have an additional maximum in summer. The number of floristically determined successional stages increases with increasing eutrophy, from three in Königsee and Attersee to eight in Lake Geneva and Lake Constance

    Sedimentation of longlife radionuclides in Lake Constance

    No full text
    Lindner G, Pfeiffer W, Wahl U, et al. Sedimentation of longlife radionuclides in Lake Constance. Presented at the Int. Conf. Heavy Metals in the Environment
    corecore