212 research outputs found

    Human pregnancy-associated malaria-specific B cells target polymorphic, conformational epitopes in VAR2CSA

    Get PDF
    Pregnancy-associated malaria (PAM) is caused by Plasmodium falciparum-infected erythrocytes (IEs) that bind to chondroitin sulphate A (CSA) in the placenta by PAM-associated clonally variant surface antigens (VSA). Pregnancy-specific VSA (VSAPAM), which include the PfEMP1 variant VAR2CSA, are targets of IgG-mediated protective immunity to PAM. Here, we report an investigation of the specificity of naturally acquired immunity to PAM, using eight human monoclonal IgG1 antibodies that react exclusively with intact CSA-adhering IEs expressing VSAPAM. Four reacted in Western blotting with high-molecular-weight (> 200 kDa) proteins, while seven reacted with either the DBL3-X or the DBL5-ε domains of VAR2CSA expressed either as Baculovirus constructs or on the surface of transfected Jurkat cells. We used a panel of recombinant antigens representing DBL3-X domains from P. falciparum field isolates to evaluate B-cell epitope diversity among parasite isolates, and identified the binding site of one monoclonal antibody using a chimeric DBL3-X construct. Our findings show that there is a high-frequency memory response to VSAPAM, indicating that VAR2CSA is a primary target of naturally acquired PAM-specific protective immunity, and demonstrate the value of human monoclonal antibodies and conformationally intact recombinant antigens in VSA characterization

    Human monoclonal IgG selection of Plasmodium falciparum for the expression of placental malaria-specific variant surface antigens

    Get PDF
    Pregnancy-associatedPlasmodium falciparum malaria (PAM) is a major cause of morbidity and mortality in African women and their offspring. PAM is characterized by accumulation of infected erythrocytes (IEs) that adhere to chondroitin sulphate A (CSA) in the placental intervillous space. We show here that human monoclonal IgG antibodies with specificity for variant surface antigens (VSA) specifically expressed by CSA-adhering IEs (VSAPAM) can be used in vitro to select parasites from nonpregnant donors to express VSAPAM and that this selection for VSAPAM expression results in preferential transcription of var2csa. The results corroborate current efforts to develop PAM-specific vaccines based on VAR2CSA

    The role of Plasmodium falciparum var genes in malaria in pregnancy

    Get PDF
    Sequestration of Plasmodium falciparum-infected erythrocytes in the placenta is responsible for many of the harmful effects of malaria during pregnancy. Sequestration occurs as a result of parasite adhesion molecules expressed on the surface of infected erythrocytes binding to host receptors in the placenta such as chondroitin sulphate A (CSA). Identification of the parasite ligand(s) responsible for placental adhesion could lead to the development of a vaccine to induce antibodies to prevent placental sequestration. Such a vaccine would reduce the maternal anaemia and infant deaths that are associated with malaria in pregnancy. Current research indicates that the parasite ligands mediating placental adhesion may be members of the P. falciparum variant surface antigen family PfEMP1, encoded by var genes. Two relatively well-conserved subfamilies of var genes have been implicated in placental adhesion, however, their role remains controversial. This review examines the evidence for and against the involvement of var genes in placental adhesion, and considers whether the most appropriate vaccine candidates have yet been identified

    Antibodies from malaria-exposed pregnant women recognize trypsin resistant epitopes on the surface of Plasmodium falciparum-infected erythrocytes selected for adhesion to chondroitin sulphate A

    Get PDF
    BACKGROUND: The ability of Plasmodium falciparum-infected erythrocytes to adhere to the microvasculature endothelium is thought to play a causal role in malaria pathogenesis. Cytoadhesion to endothelial receptors is generally found to be highly sensitive to trypsinization of the infected erythrocyte surface. However, several studies have found that parasite adhesion to placental receptors can be markedly less sensitive to trypsin. This study investigates whether chondroitin sulphate A (CSA) binding parasites express trypsin-resistant variant surface antigens (VSA) that bind female-specific antibodies induced as a result of pregnancy associated malaria (PAM). METHODS: Fluorescence activated cell sorting (FACS) was used to measure the levels of adult Scottish and Ghanaian male, and Ghanaian pregnant female plasma immunoglobulin G (IgG) that bind to the surface of infected erythrocytes. P. falciparum clone FCR3 cultures were used to assay surface IgG binding before and after selection of the parasite for adhesion to CSA. The effect of proteolytic digestion of parasite erythrocyte surface antigens on surface IgG binding and adhesion to CSA and hyaluronic acid (HA) was also studied. RESULTS: P. falciparum infected erythrocytes selected for adhesion to CSA were found to express trypsin-resistant VSA that are the target of naturally acquired antibodies from pregnant women living in a malaria endemic region of Ghana. However in vitro adhesion to CSA and HA was relatively trypsin sensitive. An improved labelling technique for the detection of VSA expressed by CSA binding isolates has also been described. CONCLUSION: The VSA expressed by CSA binding P. falciparum isolates are currently considered potential targets for a vaccine against PAM. This study identifies discordance between the trypsin sensitivity of CSA binding and surface recognition of CSA selected parasites by serum IgG from malaria exposed pregnant women. Thus, the complete molecular definition of an antigenic P. falciparum erythrocyte surface protein that can be used as a malaria in pregnancy vaccine has not yet been achieved

    Glucagon-like peptide-1 analogue, liraglutide, in experimental cerebral malaria: implications for the role of oxidative stress in cerebral malaria

    Get PDF
    BACKGROUND: Cerebral malaria from Plasmodium falciparum infection is major cause of death in the tropics. The pathogenesis of the disease is complex and the contribution of reactive oxygen and nitrogen species (ROS/RNS) in the brain is incompletely understood. Insulinotropic glucagon-like peptide-1 (GLP-1) mimetics have potent neuroprotective effects in animal models of neuropathology associated with ROS/RNS dysfunction. This study investigates the effect of the GLP-1 analogue, liraglutide against the clinical outcome of experimental cerebral malaria (ECM) and Plasmodium falciparum growth. Furthermore the role of oxidative stress on ECM pathogenesis is evaluated. METHODS: ECM was induced in Plasmodium berghei ANKA-infected C57Bl/6j mice. Infected Balb/c (non-cerebral malaria) and uninfected C57Bl/6j mice were included as controls. Mice were treated twice-daily with vehicle or liraglutide (200 μg/kg). ROS/RNS were quantified with in vivo imaging and further analyzed ex vivo. Brains were assayed for cAMP, activation of cAMP response element binding protein (CREB) and nitrate/nitrite. Plasmodium falciparum was cultivated in vitro with increasing doses of liraglutide and growth and metabolism were quantified. RESULTS: The development and progression of ECM was not affected by liraglutide. Indeed, although ROS/RNS were increased in peripheral organs, ROS/RNS generation was not present in the brain. Interestingly, CREB was activated in the ECM brain and may protect against ROS/RNS stress. Parasite growth was not adversely affected by liraglutide in mice or in P. falciparum cultures indicating safety should not be a concern in type-II diabetics in endemic regions. CONCLUSIONS: Despite the breadth of models where GLP-1 is neuroprotective, ECM was not affected by liraglutide providing important insight into the pathogenesis of ECM. Furthermore, ECM does not induce excess ROS/RNS in the brain potentially associated with activation of the CREB system

    Analysis of IgG with specificity for variant surface antigens expressed by placental Plasmodium falciparum isolates

    Get PDF
    BACKGROUND: Pregnancy-associated malaria (PAM) is caused by Plasmodium falciparum-infected erythrocytes that can sequester in placental intervillous space by expressing particular variant surface antigens (VSA) that can mediate adhesion to chondroitin sulfate A (CSA) in vitro. IgG antibodies with specificity for the VSA expressed by these parasites (VSA(PAM)) are associated with protection from maternal anaemia, prematurity and low birth weight, which is the greatest risk factor for death in the first month of life. METHODS: In this study, the development of anti-VSA(PAM )antibodies in a group of 151 women who presented to the maternity ward of Albert Schweitzer Hospital in Lambaréné, Gabon for delivery was analysed using flow cytometry assays. Plasma samples from placenta infected primiparous women were also investigated for their capacity to inhibit parasite binding to CSA in vitro. RESULTS: In the study cohort, primiparous as well as secundiparous women had the greatest risk of infection at delivery as well as during pregnancy. Primiparous women with infected placentas at delivery showed higher levels of VSA(PAM)-specific IgG compared to women who had no malaria infections at delivery. Placental isolates of Gabonese and Senegalese origin tested on plasma samples from Gabon showed parity dependency and gender specificity patterns. There was a significant correlation of plasma reactivity as measured by flow cytometry between different placental isolates. In the plasma of infected primiparous women, VSA(PAM)-specific IgG measured by flow cytometry could be correlated with anti-adhesion antibodies measured by the inhibition of CSA binding. CONCLUSION: Recognition of placental parasites shows a parity- and sex- dependent pattern, like that previously observed in laboratory strains selected to bind to CSA. Placental infections at delivery in primiparous women appear to be sufficient to induce functional antibodies which can both recognize the surface of the infected erythrocytes as well as block their binding to CSA. The correlation between serum reactivities of placental field isolates from different geographic locations and collected at different times is indicative of the conserved nature of the antigen(s) mediating PAM

    Expression of Plasmodium falciparum erythrocyte membrane protein 1 in experimentally infected humans

    Get PDF
    BACKGROUND: Parasites causing severe malaria in non-immune patients express a restricted subset of variant surface antigens (VSA), which are better recognized by immune sera than VSA expressed during non-severe disease in semi-immune individuals. The most prominent VSA are the var gene-encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family, which is expressed on the surface of infected erythrocytes where it mediates binding to endothelial receptors. Thus, severe malaria may be caused by parasites expressing PfEMP1 variants that afford parasites optimal sequestration in immunologically naïve individuals and high effective multiplication rates. METHODS: var gene transcription was analysed using real time PCR and PfEMP1 expression by western blots as well as immune plasma recognition of parasite cultures established from non-immune volunteers shortly after infection with NF54 sporozoites. RESULTS: In cultures representing the first generation of parasites after hepatic release, all var genes were transcribed, but GroupA var genes were transcribed at the lowest levels. In cultures established from second or third generation blood stage parasites of volunteers with high in vivo parasite multiplication rates, the var gene transcription pattern differed markedly from the transcription pattern of the cultures representing first generation parasites. This indicated that parasites expressing specific var genes, mainly belonging to group A and B, had expanded more effectively in vivo compared to parasites expressing other var genes. The differential expression of PfEMP1 was confirmed at the protein level by immunoblot analysis. In addition, serological typing showed that immune sera more often recognized second and third generation parasites than first generation parasites. CONCLUSION: In conclusion, the results presented here support the hypothesis that parasites causing severe malaria express a subset of PfEMP1, which bestows high parasite growth rates in individuals with limited pre-existing immunity

    CD36 selection of 3D7 Plasmodium falciparum associated with severe childhood malaria results in reduced VAR4 expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A subset of the <it>Plasmodium falciparum </it>erythrocyte membrane protein 1 (PfEMP1<sub>SM</sub>) is involved in the cytoadherence of <it>P. falciparum</it>-infected red blood cells (iRBC) contributing to the pathogenesis of severe disease among young children in malaria endemic areas. The PfEMP1<sub>SM </sub>are encoded by group A <it>var </it>genes that are composed of a more constrained range of amino acid sequences than groups B and C <it>var </it>genes encoding PfEMP1<sub>UM </sub>associated with uncomplicated malaria. Also, unlike <it>var </it>genes from groups B and C, those from group A do not have sequences consistent with CD36 binding – a major cytoadhesion phenotype of <it>P. falciparum </it>isolates.</p> <p>Methods</p> <p>A 3D7 PfEMP1<sub>SM </sub>sub-line (3D7<sub>SM</sub>) expressing VAR4 (PFD1235w/MAL8P1.207) was selected for binding to CD36. The protein expression of this parasite line was monitored by surface staining of iRBC using VAR4-specific antibodies. The serological phenotype of the 3D7<sub>SM </sub>parasites was determined by flow cytometry using malaria semi-immune and immune plasma and transcription of the 59 <it>var </it>genes in 3D7 were analysed by real-time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) using <it>var</it>-specific primers.</p> <p>Results</p> <p>A selection-induced increased adhesion of 3D7<sub>SM </sub>iRBC to CD36 resulted in a reduced <it>var4 </it>transcription and VAR4 surface expression.</p> <p>Conclusion</p> <p>VAR4 is not involved in CD36 adhesion. The current findings are consistent with the notion that CD36 adhesion is not associated with particular virulent parasite phenotypes, such as those believed to be exhibited by VAR4 expressing parasites.</p

    Prolonged Plasmodium falciparum Infection in Immigrants, Paris

    Get PDF
    Few immigrant travelers have Plasmodium falciparum infections >2 months after leaving malaria-endemic areas. We conducted a case–control study to identify factors associated with prolonged P. falciparum infection in immigrant travelers. Results suggest that P. falciparum infection should be systematically suspected, even months after travel, especially in pregnant women and first-arrival immigrants
    corecore