8 research outputs found

    The formation and fate of internal waves in the South China Sea

    Get PDF
    Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis1, sediment and pollutant transport2 and acoustic transmission3; they also pose hazards for man-made structures in the ocean4. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking5, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects6,7. For over a decade, studies8-11 have targeted the South China Sea, where the oceans' most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions

    Hydrography and flow in the Lucky Strike segment of the Mid-Atlantic Ridge

    Get PDF
    International audienceThe Lucky Strike segment between 37 and 38N on the Mid-Atlantic Ridge is the focus of the international MoMAR program to monitor seafloor-spreading processes. During the GRAVILUCK cruise in August 2006, hydrographic, velocity and light-scattering data were collected in the rift valley at Lucky Strike in order to investigate the regional dynamics and to provide background information for the monitoring effort. The survey observations reveal a remarkably simple dynamical setting dominated by persistent northward flow transporting ≈0.2 Sv of water along the rift valley. Approximately half of this transport must upwell within a deep basin that occupies the northern half of the segment. In the comparatively shallow segment center, the along-valley transport takes place in two parallel, hydraulically controlled overflows on both sides of an active volcano that rises from the rift-valley floor. Within the better sampled of these overflows instantaneous velocities recorded during the survey were northward more than 95% of the time and occasionally exceeded 20 cm s-1. Similar to other laterally confined overflows in the deep ocean, the cross-sill density gradients are characterized by a lower layer with streamwise decreasing densities and an upper layer where the densities increase along the path of the flow. This vertical density-gradient dipole is the signature of the buoyancy flux associated with high levels of diapycnal mixing near the sill. Overall, the hydrography and dynamics in the rift valley of the Lucky Strike segment are highly reminiscent of many ridge-flank canyons in the western South Atlantic, where mean along-axial advection of density is balanced by vigorous diapycnal mixing. There is circumstantial evidence from historic hydrographic data suggesting that northward flow below ≈1800m in the rift valley in the MoMAR region is persistent on time scales of years to decades and that it extends more than 200 km to the south. During GRAVILUCK the northward flow at Lucky Strike extended well above 1600m, where two previous one year-long current meters had recorded southward mean flows near the Lucky Strike hydrothermal vent field. While interannual variability can potentially account for this difference, the data also allow for the possibility of a cyclonic re-circulation around an isolated topographic peak east of the vent field, resulting in the southward mean flows observed there. In addition to the light-scattering anomalies associated with plumes rising from the Lucky Strike vent field near the segment center, the GRAVILUCK data also show clear evidence for a separate hydrothermal particle plume emanating from a not-yet-discovered vent field in the southern half of the segment, probably near 2000m

    Turbulence in Astrophysical and Geophysical Flows

    No full text

    Long Noncoding RNAs and Their Role in Oncogenesis

    No full text

    Functions for fish mucus

    No full text
    corecore