128 research outputs found

    LABORARTORY BRNO

    Get PDF
    Architektonický návrh na východního nároží křižovatky ulice Koliště a Milady Horákové. Programem objektu je galerie architektury a design se zaměřením na nová digitální média doplněné o přednáškový sál a dílny pro workshopy a hackerspace. Architektonický výraz a jeho hlavní motiv návrhu je pohyb a tok lidí. Objekt je „vybroušen“ z pohybu lidí a aut. Návrh byl navrhován jako tři objekty, které se následně fluidně propojí a vytvoří kontinuální celek jedné hmoty. Konstrukce objektu je kombinací stěnového a skeletového systému ze železobetonu.The architectural design of the eastern corner of the intersection street Koliště and Milady Horakove. Program is a gallery of architecture and design with a focus on new digital media supplemented with lecture hall and workshops for work and hackerspace. The architectural expression and its main design theme is the movement and flow of people. The building is "sanded" the movement of people and cars. The proposal was designed as a three objects, which are then fluidly connects and creates one continuous whole matter. Construction of the building is a combination of wall and skeletal system of reinforced concrete.

    Sanitation installation and gas installation in the house with rental flats

    Get PDF
    Bakalářská práce je zaměřená na zdravotně technické a plynovodní instalace v domě s nájemními byty. Teoretická část se zabývá srážkovými vodami a jejich využití. Řešená budova má sedm nadzemních podlaží a 33 nájemních bytů.The bachelor thesis is focused on the technical and gas installation in the house with rental flats. The theoretical part deals with precipitation water and its use. The solved building has seven above-ground floors and 33 rental flats.

    DESIGN OPTIMIZATION OF VERTICAL CRYOGENIC TANK

    Get PDF

    Knockout of arsenic (+3 oxidation state) methyltransferase results in sex-dependent changes in phosphatidylcholine metabolism in mice

    Get PDF
    Arsenic (+3 oxidation state) methyltransferase is the key enzyme in the methylation pathway for inorganic arsenic. We have recently shown that As3mt knockout (KO) has a profound effect on metabolomic profiles in mice. Phosphatidylcholine species (PCs) were the largest group of metabolites altered in both plasma and urine. The present study used targeted analysis to investigate the KO-associated changes in PC profiles in the liver, the site of PC synthesis. Results show that As3mt KO has a systemic effect on PC metabolism and that this effect is sex dependent

    Oxidation state specific analysis of arsenic species in tissues of wild-type and arsenic (+ 3 oxidation state) methyltransferase-knockout mice

    Get PDF
    Arsenic methyltransferase (As3mt) catalyzes the conversion of inorganic arsenic (iAs) to its methylated metabolites, including toxic methylarsonite (MAsIII) and dimethylarsinite (DMAsIII). Knockout (KO) of As3mt was shown to reduce the capacity to methylate iAs in mice. However, no data are available on the oxidation states of As species in tissues of these mice. Here, we compare the oxidation states of As species in tissues of male C57BL/6 As3mt-KO and wild-type (WT) mice exposed to arsenite (iAsIII) in drinking water. WT mice were exposed to 50 mg/L As and As3mt-KO mice that cannot tolerate 50 mg/L As were exposed to 0, 15, 20, 25 or 30 mg/L As. iAsIII accounted for 53% to 74% of total As in liver, pancreas, adipose, lung, heart, and kidney of As3mt-KO mice; tri- and pentavalent methylated arsenicals did not exceed 10% of total As. Tissues of WT mice retained iAs and methylated arsenicals: iAsIII, MAsIII and DMAsIII represented 55%–68% of the total As in the liver, pancreas, and brain. High levels of methylated species, particularly MAsIII, were found in the intestine of WT, but not As3mt-KO mice, suggesting that intestinal bacteria are not a major source of methylated As. Blood of WT mice contained significantly higher levels of As than blood of As3mt-KO mice. This study is the first to determine oxidation states of As species in tissues of As3mt-KO mice. Results will help to design studies using WT and As3mt-KO mice to examine the role of iAs methylation in adverse effects of iAs exposure

    Characterization of the Impaired Glucose Homeostasis Produced in C57BL/6 Mice by Chronic Exposure to Arsenic and High-Fat Diet

    Get PDF
    Background: Type 2 diabetes is characterized by glucose intolerance and insulin resistance. Obesity is the leading cause of type 2 diabetes. Growing evidence suggests that chronic exposure to inorganic arsenic (iAs) also produces symptoms consistent with diabetes. Thus, iAs exposure may further increase the risk of diabetes in obese individuals

    Differential sensitivities of bone marrow, spleen and thymus to genotoxicity induced by environmentally relevant concentrations of arsenite

    Get PDF
    It is known in humans and mouse models, that drinking water exposures to arsenite (As+3) leads to immunotoxicity. Previously, our group showed that certain types of immune cells are extremely sensitive to arsenic induced genotoxicity. In order to see if cells from different immune organs have differential sensitivities to As+3, and if the sensitivities correlate with the intracellular concentrations of arsenic species, male C57BL/6J mice were dosed with 0, 100 and 500 ppb As+3 via drinking water for 30 d. Oxidation State Specific Hydride Generation-Cryotrapping- Inductively Coupled Plasma- Mass Spectrometry (HG- CT- ICP- MS) was applied to analyze the intracellular arsenic species and concentrations in bone marrow, spleen and thymus cells isolated from the exposed mice. A dose-dependent increase in intracellular monomethylarsonous acid (MMA+3) was observed in both bone marrow and thymus cells, but not spleen cells. The total arsenic and MMA+3 levels were correlated with an increase in DNA damage in bone marrow and thymus cells. An in vitro treatment of 5, 50 and 500 nM As+3 and MMA+3 revealed that bone marrow cells are most sensitive to As+3 treatment, and MMA+3 is more genotoxic than As+3. These results suggest that the differential sensitivities of the three immune organs to As+3 exposure are due to the different intracellular arsenic species and concentrations, and that MMA+3 may play a critical role in immunotoxicity

    Speciation Analysis of Arsenic by Selective Hydride Generation-Cryotrapping-Atomic Fluorescence Spectrometry with Flame-in-Gas-Shield Atomizer: Achieving Extremely Low Detection Limits with Inexpensive Instrumentation

    Get PDF
    This work describes the method of a selective hydride generation-cryotrapping (HG-CT) coupled to an extremely sensitive but simple in-house assembled and designed atomic fluorescence spectrometry (AFS) instrument for determination of toxicologically important As species. Here, an advanced flame-in-gas-shield atomizer (FIGS) was interfaced to HG-CT and its performance was compared to a standard miniature diffusion flame (MDF) atomizer. A significant improvement both in sensitivity and baseline noise was found that was reflected in improved (4 times) limits of detection (LODs). The yielded LODs with the FIGS atomizer were 0.44, 0.74, 0.15, 0.17 and 0.67 ng L–1 for arsenite, total inorganic, mono-, dimethylated As and trimethylarsine oxide, respectively. Moreover, the sensitivities with FIGS and MDF were equal for all As species, allowing for the possibility of single species standardization with arsenate standard for accurate quantification of all other As species. The accuracy of HG-CT-AFS with FIGS was verified by speciation analysis in two samples of bottled drinking water and certified reference materials, NRC CASS-5 (nearshore seawater) and SLRS-5 (river water) that contain traces of methylated As species. As speciation was in agreement with results previously reported and sums of all quantified species corresponded with the certified total As. The feasibility of HG-CT-AFS with FIGS was also demonstrated by the speciation analysis in microsamples of exfoliated bladder epithelial cells isolated from human urine. The results for the sums of trivalent and pentavalent As species corresponded well with the reference results obtained by HG-CT-ICPMS (inductively coupled plasma mass spectrometry)

    Direct analysis and stability of methylated trivalent arsenic metabolites in cells and tissues

    Get PDF
    Chronic ingestion of water containing inorganic arsenic (iAs) has been linked to a variety of adverse health effects, including cancer, hypertension and diabetes. Current evidence suggests that the toxic methylated trivalent metabolites of iAs, methylarsonous acid (MAs) and dimethylarsinous acid (DMAsIII) play a key role in the etiology of these diseases. Both MAs and DMAsIII have been detected in urine of subjects exposed to iAs. However, the rapid oxidation of DMAsIII and, to a lesser extent, MAsIII in oxygen-rich environments leads to difficulties in the analysis of these metabolites in samples of urine collected in population studies. Results of our previous work indicate that MAsIII and DMAsIII are relatively stable in a reducing cellular environment and can be quantified in cells and tissues. In the present study, we used the oxidation state-specific hydride generation-cryotrapping-atomic absorption spectroscopy (HG-CT-AAS) to examine the presence and stability of these trivalent metabolites in the liver of mice and in UROtsa/F35 cells exposed to iAs. Tri- and pentavalent metabolites of iAs were analyzed directly (without chemical extraction or digestion). Liver homogenates prepared in cold deionized water and cell culture medium and lysates were stored at either 0 °C or −80 °C for up to 22 days. Both MAsIII and DMAsIII were stable in homogenates stored at −80 °C. In contrast, DMAsIII in homogenates stored at 0 °C began to oxidize to its pentavalent counterpart after 1 day; MAsIII remained stable for at least 3 weeks under these conditions. MAsIII and DMAsIII generated in UROtsa/F35 cultures were stable for 3 weeks when culture media and cell lysates were stored at −80 °C. These results suggest that samples of cells and tissues represent suitable material for the quantitative, oxidation state-specific analysis of As in laboratory and population studies examining the metabolism or toxic effects of this metalloid
    corecore