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Abstract

It is known in humans and mouse models, that drinking water exposures to arsenite (As+3) leads to 

immunotoxicity. Previously, our group showed that certain types of immune cells are extremely 

sensitive to arsenic induced genotoxicity. In order to see if cells from different immune organs 

have differential sensitivities to As+3, and if the sensitivities correlate with the intracellular 

concentrations of arsenic species, male C57BL/6J mice were dosed with 0, 100 and 500 ppb As+3 

via drinking water for 30 d. Oxidation State Specific Hydride Generation-Cryotrapping- 

Inductively Coupled Plasma- Mass Spectrometry (HG- CT- ICP- MS) was applied to analyze the 

intracellular arsenic species and concentrations in bone marrow, spleen and thymus cells isolated 

from the exposed mice. A dose-dependent increase in intracellular monomethylarsonous acid 

(MMA+3) was observed in both bone marrow and thymus cells, but not spleen cells. The total 

arsenic and MMA+3 levels were correlated with an increase in DNA damage in bone marrow and 

thymus cells. An in vitro treatment of 5, 50 and 500 nM As+3 and MMA+3 revealed that bone 

marrow cells are most sensitive to As+3 treatment, and MMA+3 is more genotoxic than As+3. 

These results suggest that the differential sensitivities of the three immune organs to As+3 

exposure are due to the different intracellular arsenic species and concentrations, and that MMA+3 

may play a critical role in immunotoxicity.
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1. INTRODUCTION

Arsenic (As) contamination in food and drinking water is a world-wide public health issue. 

The trivalent inorganic form of As, arsenite (As+3), is the most prevalent form in the 

environment. Exposure to As is associated with multiple diseases such as skin lesions, 

diabetes, cardiovascular diseases, and cancers (Argos et al., 2010; Schuhmacher-Wolz et al., 

2009; Vahter et al., 2008). Once As+3 gets into the body, it is metabolized into monomethyl 

and dimethyl trivalent and pentavalent species (Aposhian and Aposhian, 2006). 

Monomethylarsonous acid (MMA+3) has been shown to be more toxic than As+3 both in 
vivo and in vitro (Petrick et al., 2001; Styblo et al., 2000). MMA+3 can be further 

metabolized to dimethylarsonous acid (DMA+3) or dimethylarsinic acid (DMA+5) and 

excluded from the body.

Arsenic induced immunotoxicity has been studied by many groups both in vitro and in vivo 
(Ahmed et al., 2014; Nadeau et al., 2014; Biswas et al., 2008; Vahter et al., 2008; Soto-Peña 

et al., 2006; Gonsebatt et al., 1994). However, only a few studies have addressed the toxicity 

of As exposure to immune cells at environmentally relevant concentrations. Previous studies 

in our laboratory showed that in vivo drinking water exposure to As+3 at very low 

concentrations suppresses mouse bone marrow and spleen cell functions (Ezeh et al., 2014; 

Li et al., 2010). Human peripheral blood mononuclear cells (HPBMC) studies also showed a 

dose-dependent suppression of T cell proliferation at extremely low concentrations of As+3 

(0.1–10 nM) in some individuals, with virtually all individuals susceptible to T cell 

immunosuppression by MMA+3 (Burchiel et al., 2014). Therefore, lymphocytes are 

extremely sensitive to As+3 exposure at environmentally relevant levels. However, it is 

unclear whether immunotoxicity is likely due to As+3 or MMA+3.

T cells are generated in bone marrow and transferred to the thymus for development, while 

B cells develop in bone marrow. The spleen is a critical immune organ for the storage of 

both T and B cells and for systemic immune responses. In a previous study on the 

genotoxicity induced by As+3 in mouse thymus cells, we showed that mouse thymus cells 

are extremely sensitive to As+3 induced DNA damage, which is correlated with the 

inhibition of a base excision repair factor, Poly (ADP-ribose) polymerase (PARP) (Xu et al., 

2016b). In the present study, the sensitivities of the three immune organs, bone marrow, 

spleen and thymus to As induced genotoxicity were compared both in vivo and in vitro. The 

species and levels of intracellular arsenic contents in the cells from the three immune organs 

were also determined and compared.

2. METHODS

2.1. Chemicals and Reagents

Sodium arsenite (CAS 774-46-5, NaAsO2, Purity ≥ 90%) was purchased from Sigma-

Aldrich (St. Louis, MO). Methylarsine iodide (MMA+3) was obtained from Drs. Terry 

Monks and Todd Caminesch at the Southwest Environmental Health Sciences Center, 

University of Arizona. Penicillin/Streptomycin (Pen/Strep) and L-Glutamine were purchased 

from Life Technologies (Grand Island, NY). Dulbecco’s phosphate buffered saline w/o Ca+2 

or Mg+2 (DPBS−) was purchased from Mediatech (Manassas, VA). Dimethyl sulphoxide 
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(DMSO), RPMI 1640 and Iscove’s Modified Dulbecco’s Medium (IMDM) base medium 

were purchased from Sigma Aldrich. Fetal Bovine Serum (FBS) was purchased from 

Atlanta Biologicals (Flowery Branch, GA). Hanks Balanced Salt Solution (HBSS) was 

purchased from Lonza (Walkersville, MD). Sodium Hydroxide (NaOH) was purchased from 

EMD Chemicals Inc. (Gibbstown, NJ). 0.5 M EDTA solution was purchased from Promega 

(Madison, WI). The Comet Assay kit (Cat. No. 4252-040-ESK), hOGG1 FLARE™ Assay 

kit (Cat. No. 4130-100-FK) and the PARP activity kit (Cat. No. 4685-096-K) were 

purchased from Trevigen (Gaithersburg, MD). The BCA assay kit (Cat. No. 23225) was 

purchased from Thermo Scientific (Rockford, IL).

2.2. Mouse In Vivo Exposures

C57BL/6J male mice were purchased at 8 weeks of age from Jackson Laboratory (Bar 

Harbor, ME). All animal experiments were performed following the protocols approved by 

the Institutional Animal Use and Care Committee at the University of New Mexico Health 

Sciences Center. Following one week of acclimation, mice (2–3 per cage) were exposed to 

As+3 at different concentrations via drinking water for 30 d. As+3 doses were prepared fresh 

weekly by weighing each water bag and determining the appropriate amount of stock As+3 

solution to add to each bag to yield 100 and 500 ppb. No treatment was added to control 

bags. Water bags were weighed after each week and the change in weight was used to 

estimate the amount of water consumed by each group. The As+3 concentrations in drinking 

water were verified using Mass Spectrometry by Dr. Abdul-Mehdi S. Ali at Department of 

Earth and Planetary Sciences, University of New Mexico. Mice were fed 2020X Teklad 

global soy protein-free extruded rodent diet (Envigo, Indianapolis, IN) throughout the 

experiment.

2.3. Isolation of Bone Marrow Cells

Bone marrow cells were isolated according to the procedures described in Ezeh et al., 2014. 

Basically, mouse femurs were collected into HBSS medium in our animal facility and 

transferred to our laboratory to extract cells. Femurs were placed in petri dish containing 5 

ml of cold sterile bone marrow medium (500 ml IMDM with 2% FBS, 2 mM L-glutamine, 

and 100 mg/ml Pen/Strep) and trimmed to expose interior marrow shaft of the femur, the end 

of the femur were then cut off. one cc syringe and 25 gauge needle were used to flush the 

bone marrow medium through the femur several times to release cells into the petri dish. 

The suspension was immediately transferred to a 15 ml centrifuge tube, centrifuged at 200 

×g for 10 min, aspirated, and washed with bone marrow medium. The cell count and 

viability were determined by acridine orange/propidium iodide (AO/PI) staining on a 

Nexcelom Cellometer 2000.

2.4. Isolation of Thymus and Spleen Cells

Thymus and spleen were isolated following the sterile procedures described in Xu, et al., 

2016. Basically, mouse thymus and spleen were harvested in our animal facility and 

transferred to the laboratory in HBSS on ice. Single cell suspensions of spleen and thymus 

cells were prepared by homogenizing the organ between the frosted ends of two sterilzed 

microscope slides (Fisher Scientific, Pittsburgh, PA) into a dish containing 5 mL of cold 

mouse medium (500 ml RPMI 1640 with 10% FBS, 2 mM L-glutamine, and 100 mg/ml 
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Pen/Strep). Suspended cells were centrifuged at 200 ×g for 10 min, aspirated, and washed 

with mouse medium. The cell count and viability were determined by AO/PI staining on a 

Nexcelom Cellometer 2000.

2.5. Oxidation state specific Hydride Generation- Cryotrapping- Inductively Coupled 
Plasma-Mass Spectrometry (HG- CT- ICP- MS)

The analysis of tri- and pentavalent As species was performed by HG-CT-ICP-MS as 

previously described (Currier et al., 2014; Matousek et al., 2013). Briefly, cell pellets were 

lysed in ice-cold deionized water. The trivalent species, As3+, MMA3+, and dimethylarsinite 

(DMA3+) were measured in an aliquot of cell lysate directly, without pretreatment. Another 

aliquot was treated with 2% cysteine and analyzed for total inorganic As (As3+ + As5+), total 

methyl-As (MMA3+ + MMA5+), and total DMAs (DMA3+ + DMA5+). Calibration curves 

were generated using cysteine-treated pentavalent As standards, (at least 98% pure) as 

previously described (Hernández-Zavala et al., 2008). The concentrations of pentavalent As 

species were determined as a difference between the values obtained for cysteine-treated 

aliquots and values from untreated sample aliquots. The instrumental LODs for As species 

analyzed by HG-CT-ICP-MS ranged from 0.04 pg As for methylated arsenicals to 2.0 pg As 

for inorganic arsenicals. All values are expressed as pg of As in each arsenic species.

2.6. In Vitro As+3 and MMA+3 Treatments

Bone marrow, spleen and thymus cells were isolated as described above from three 13-week 

old male C57BL/6J mice and pooled. Cells were washed and resuspended at 1 × 106 cells/ml 

in IMDM (for bone marrow cells) or mouse medium (for spleen and thymus cells). As+3 or 

MMA+3 were added to each wells to the final concentrations of 0 (control), 5, 50 and 500 

nM. Cells were placed into a humidified 37 °C, 5% CO2 incubator for 4 h. Treated cells 

were harvested by centrifugation at 200 ×g for 10 min and resuspended in cold DPBS−. 

After another wash with cold DPBS−, the cells were ready for Comet assay analysis.

2.7. Comet Assay (Single Cell Gel Electrophoresis Assay) and Fragment Length Analysis 
using Repair Enzymes (FLARE) Assay

Treated cells were immobilized in a bed of low melting point agarose on a Trevigen 

CometSlide™ following the Comet assay kit instructions. Cells were then lysed with Lysis 

Solution with 10% DMSO (Sigma-Aldrich) over night. On the next day, DNA in the lysed 

cells were unwound with basic buffer (8 g NaOH with 500 mM EDTA in 1 L of Milli-Q 

water, pH>13) at room temperature for 45 min. For FLARE assay, human 8-oxoguanine 

DNA glycosylase 1 (hOGG1) from the FLARE kit was diluted to 1:5 and applied to the 

wells. Slides were then incubated at 37 °C for 30 min before adding the unwinding buffer. 

For both assays, slides were electrophoresed in ice cold basic buffer with 21 volts for 30 

min. Slides were washed, dried and stained with Sybr Gold (1:10000 dilution in TE buffer) 

and imaged using an epifluorescence microscope. Fifty randomly selected cells from each 

well were scored using CometScore software (TriTek Corp., Sumerduck, VA). DNA damage 

was reported by percentage of DNA in tail (Collins, 2004).
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2.8. PARP activity assay

The PARP activity assay was performed using the Trevigen PARP activity kit. All reagents 

were supplied by the kit unless otherwise specified. The procedures were previously 

described by Sun et al., 2012. Basically, cells were lysed with the Cell Extraction Buffer 

supplied in the kit, and the protein concentration was determined by the BCA Protein Assay. 

Two hundreds ng of total proteins from each sample was combined with activated DNA and 

nicotinamide adenine dinucleotide (NAD) supplied by the kit, and then placed into a 

histone-coated strip well to formed PAR complex which was fixed to the bottom of the well. 

Anti-PAR monoclonal antibody was then added to the well to bind to PAR complex, 

followed by a Horseradish peroxidase (HRP) conjugated secondary antibody against the 

primary antibody. TACS- Sapphire™ was used a substrate to generate the 

chemiluminescence signal. An equal amount of 0.2 M HCl was added to stop the reaction. 

The signals were detected using SpectraMax® 340PC microplate reader (Molecular 

Devices, Sunnyvale, CA) at 450 nm wavelength.

2.9. Statistics

Data were analyzed using Excel 2013 and Sigma Plot v12.5 software. One-way analysis of 

variance (ANOVA) and Dunnett’s t-test were used to determine differences between the 

control and treatment groups. Pearson Correlation and polynomial linear regression were 

used to analyze the correlations between intracellular As concentrations and DNA damage 

increases. All groups (Control and As+3 exposed groups) were used in the correlation 

analysis. For in vivo As+3 treatment, 5 animals (n = 5) were assigned to each treatment 

group. For the in vitro experiments, three replicates were performed and analyzed for each 

dose.

3. RESULTS

3.1. Intracellular arsenic species in the bone marrow, spleen and thymus cells of drinking 
water exposed mice

9-week old C57BL/6J male mice were exposed to 0, 100, and 500 ppb As+3 through 

drinking water for 30 d. No change in mouse body weight or water intake was observed 

during or after the exposure (Table 1). As+3 intake was calculated from the water intake of 

each mouse and the As+3 concentrations in the drinking water determined by mass 

spectrometry. Bone marrow, spleen and thymus were harvested from each mouse and the 

cells were isolated. Although not statistically significant, there was a trend of decrease in 

thymus weight, as well as the bone marrow and thymus cell recoveries (Table 1). The spleen 

weight and cell recovery were not affected by As+3 exposure. In order to measure the 

intracellular species and amounts of arsenic in these tissues from As+3 exposed mice, we 

used a very sensitive HG- CT- ICP- MS system to analyze the intracellular As levels in 5 × 

106 cells pelleted from each tissue, as well as 50 µl plasma from each mouse (Table 2). A 

dose-dependent increase in total intracellular As levels was observed in bone marrow, spleen 

and plasma but not the spleen. Control mice showed detectable levels of As, presumably due 

to small amounts of As present in food and City of Albuquerque drinking water, which has 

As levels less than 5 ppb. Interestingly, the major increased As species in bone marrow and 

thymus was the trivalent methylated form, MMA+3, which was almost undetectable in 500 
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ppb exposed spleen cells. Therefore, these results not only demonstrated that spleen is the 

least exposed tissue among the three immune organs, but also indicated that MMA+3 may be 

the major cause of genotoxicity in As+3 in vivo exposures. The concentrations of arsenic in 

plasma were an order of magnitude higher than those in cells from immune tissues; here 

DMA+3 and DMA+5 are the major metabolites.

3.2. Differential sensitivities of bone marrow, spleen and thymus in DNA damage and PARP 
activity to in vivo arsenic exposures

To compare the genotoxicity between lymphoid tissues, we performed Comet Assay on the 

cells obtained from the spleen, thymus, and bone marrow. Results showed a significant 

increase in DNA damage in both bone marrow and thymus cells starting at 100 ppb (Fig. 1A 

and 1C). No increase of DNA damage was observed in spleen cells (Fig. 1B). The activity of 

PARP was also measured as a common endpoint to see if the DNA repair ability was also 

inhibited. Arsenic is known to cause PARP inhibition, which has been shown to result in 

increased DNA damage (Qin et al., 2008; Xu et al., 2016b; Zhou et al., 2011). A dose-

dependent decrease in PARP activity was seen in bone marrow and thymus cells (Fig. 2A 

and 2C). No change in PARP activity was observed in spleen cells (Fig. 2B). These results 

showed that bone marrow and thymus cells are more prone to genotoxicity compared to 

spleen cells, which may be the result of higher intracellular As and MMA+3 concentrations 

in in vivo exposures.

3.3. Correlations between DNA damage increase and intracellular arsenic concentrations 
in bone marrow, spleen and thymus cells

In vivo exposures to As+3 resulted a dose-dependent increase in total As and MMA+3 

intracellular concentrations in bone marrow and thymus cells. We performed a regression 

analysis to reveal the relationships between total As or MMA+3 intracellular levels and the 

DNA damage in bone marrow, spleen and thymus cells. As shown, the amount of DNA 

damage correlated with the intracellular total As as well as the MMA+3 levels in bone 

marrow and thymus cells (Fig. 3A, 3C, 3D and 3F). There was no correlation between the 

DNA damage and intracellular As in the spleen cells (Fig. 3B and 3E). This analysis 

demonstrated that higher in vivo exposure to As+3 can increase the intracellular total As and 

MMA+3 in the bone marrow and thymus cells, which may induce or increase DNA damage 

in these immune tissues.

3.4. Differential sensitivities of bone marrow, spleen and thymus in DNA damage to in vitro 
arsenic exposures

In order to see if the differential sensitivities observed between spleen, thymus and bone 

marrow were due to different cell type susceptibilities, we directly added As+3 and MMA+3 

to primary cultures of these cells. Cells were isolated and treated with 5, 50 and 500 nM 

As+3 or MMA+3 in vitro for 4 h and then were assessed for DNA damage using Comet 

assay. As shown in Fig 4A, bone marrow cells were sensitive to As+3 at concentrations as 

low as 5 nM. Spleen and thymus cells were only sensitive to As+3 treatment at the high 

concentration (500 nM, Fig. 4B and 4C). However, cells from all the three organs were 

sensitive to MMA+3 starting at the 5 nM concentration, indicating that MMA+3 is more 

genotoxic than As+3 in vitro. It was also observed that bone marrow cells seemed to be the 
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most sensitive among all the three organs. However, the sensitivities of spleen and thymus 

were comparable in vitro, indicating that the lower sensitivity in spleen cells observed in the 

in vivo experiment was due to lower As accumulation. The FLARE assay is a modified type 

of Comet assay that uses hOGG1 to enhance its sensitivity to detect oxidative DNA damage 

(Smith et al., 2006). We performed the FLARE assay with same samples used for the 

Alkaline Comet assay following 4 h incubation with As+3 and MMA+3. The results obtained 

from the FLARE assay were similar to the Comet assay, except that a significant increase in 

DNA damage was observed at high doses of As+3 and MMA+3 only in thymus cells (Fig. 

4C). This observation is consistent with our previous findings that As+3 induced oxidative 

stress in thymus cells at high concentrations (Xu et al., 2016b). These results demonstrated 

that bone marrow, spleen and thymus cells are more sensitive to MMA+3 induced 

genotoxicity than As+3 in vitro, indicating that the higher sensitivities of bone marrow and 

thymus cells in in vivo exposures were likely due to the significantly increased MMA+3 

intracellular concentrations.

4. DISCUSSION

As+3 is known to cause multiple and complicated biological effects. There have been many 

studies focusing on the toxicity of As+3 over the years. However, two basic questions are 

often ignored when we set up the biological models and expose animals or cells to As+3. 

What is the actual level of exposure and what chemical species are responsible for 

immunotoxicity in various lymphoid tissues? From previous studies, we know that various 

inorganic and organic arsenic species have differential toxicities (Akter et al., 2005). From 

studies in our laboratory, we have found that cells from different immune organs and tissues 

have differential sensitivities to As (Ezeh et al., 2014, 2016; Li et al., 2010; Xu et al., 2016a, 

2016b). Therefore, it is important to determine if lymphoid organs and tissues, such as bone 

marrow, spleen and thymus have differential sensitivities to As+3 in terms of genotoxic and 

non-genotoxic actions both in vivo and in vitro.

In this study, intracellular As concentrations and species were measured in lymphoid cells 

isolated from three immune organs following As+3 30 d drinking water exposure. A 

correlation between increased DNA damage and increased intracellular MMA+3 levels was 

found in both bone marrow and thymus cells (Fig. 1 and Table 2). Spleen cells were not as 

sensitive as bone marrow and thymus cells in vivo, and the intracellular MMA+3 levels in the 

spleen were not as high as seen in bone marrow and thymus, which can be the reason that 

caused the sensitivity differences. T and B cells in the spleen are more mature than those in 

the bone marrow and thymus, which might be a factor that accounts for the differential 

intracellular As concentrations. One of our previous studies showed that the thymus cells at 

the earlier stage (double negative) are more prone to As+3 induced toxicity than the later 

stage (double positive) (Xu et al., 2016a). Therefore, it is possible that more mature cells are 

resistant to As toxicity, due to a lower intracellular As concentration or less toxic 

intracellular As species. Another observation that supports this hypothesis is that bone 

marrow cells were sensitive to even 5 nM As+3 exposure in vitro (Fig. 1A). Bone marrow 

consists of multiple types of early progenitor cells and the very early stage of pre-T cells that 

migrate to the thymus. It is important to understand potential mechanisms responsible for 

the susceptibility of early lymphoid cells to As toxicity. Also, in the Comet assay 
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experiments, we noticed that it is very common for bone marrow cells to have higher 

background DNA damage from in vivo exposures, which may also due to the fragility of the 

progenitor cells in the bone morrow.

MMA+3 has been shown to be more toxic than As+3 in lymphoid and non-lymphoid tissues. 

MMA+3 is formed in vivo mostly in the liver, kidneys, and lungs under the influence of the 

AS3MT enzyme (Chen et al., 2011). We have found little enzyme expression of AS3MT in 

mouse lymphoid tissue, and have found little evidence for metabolism of As+3 in lymphoid 

tissues (unpublished data). Thus we believe that the presence of MMA+3 in lymphoid tissues 

is a reflection of MMA+3 uptake from the blood. From Table 2, we know that although the 

pentavalent forms of As species in the plasma are MMA+5, DMA+3 and DMA+5, the 

MMA+3 concentration was also significantly increased. In Supplementary Table 1, we found 

that 500 ppb exposure of mice resulted in a 477 nM intracellular concentration of total As 

species in thymus cells, which is in the concentration range for our in vitro studies (Figure 

4). MMA+3 was the most prevalent form in high dose exposed bone marrow and thymus 

cells. Also, there was As+5 in cells from all three tissues, but As+3 was almost undetectable 

in all three tissues. Therefore, we think that the differences in bone marrow and thymus 

compared to spleen may result from a difference in the ability of cells either to import or 

export As+3 and MMA+3 or to convert MMA+5 to MMA+3. Our current efforts are aimed at 

measuring these differences.

Regarding the mechanism of DNA damage produced by MMA+3, it has been found that 

MMA+3 may produce stronger inhibition than As+3 of PARP, a zinc finger protein that is 

required for base excision repair, (Sun et al., 2012; Zhou et al., 2014). In our previous 

studies, we demonstrated a correlation between PARP activity inhibition and the increase of 

DNA damage in mouse thymus cells (Xu et al., 2016b). Therefore, the DNA damage 

increase observed in the mouse bone marrow and thymus cells following in vivo As+3 

exposure appears to result from suppression of the DNA repair system.

In summary, the present study showed differential sensitivities of the cells from three 

important immune organs, bone marrow, spleen and thymus, to As+3 induced genotoxicity in 
vivo. The in vivo sensitivity was shown to be correlated with an increase in the trivalent 

methylated arsenic species, MMA+3. Bone marrow cells were found to be the most sensitive 

tissue in vitro, which may relate to the immaturity of the various cell types. These studies 

stress the importance of measuring lymphoid tissue exposure and performing speciation 

analyses for arsenic studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• MMA+3 is the main species in bone marrow and thymus in As+3 

exposed mice.

• Bone marrow is the most sensitive lymphoid tissue to arsenic-induced 

genotoxicity.

• Increase in DNA damage is correlated with more intracellular MMA+3 

in bone marrow and thymus.

• An in vivo exposure to 100 ppb As+3 induced genotoxicity in bone 

marrow and thymus.

• MMA+3 is more genotoxic than As+3 in vitro.
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Figure 1. 
DNA damage in bone marrow, spleen and thymus cells from 30 d As+3 drinking water 

exposed mice. 9-week old male C57BL/6J mice were exposed to 0, 100 and 500 ppb As+3 

through drinking water for 30 d. Bone marrow, spleen and thymus cells were isolated and 

the DNA damage was measured by Comet assay. A, bone marrow. B, spleen. C, thymus. 

*Significantly different compared to control (p<0.05, n=5). Results are Means ± SD.
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Figure 2. 
PARP activity in bone marrow, spleen and thymus cells from 30 d As+3 drinking water 

exposed mice. 9-week old male C57BL/6J mice were exposed to 0, 100 and 500 ppb As+3 

through drinking water for 30 d. Bone marrow, spleen and thymus cells were isolated and 

the PARP activity assay was used to measure the PARP activity in the cell protein lysates. A, 

bone marrow. B, spleen. C, thymus. *Significantly different compared to control (p<0.05, 

n=5). Results are Means ± SD.
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Figure 3. 
Correlations between intracellular total As or MMA+3 concentrations and DNA damage in 

bone marrow, spleen and thymus cells from 30 d As+3 drinking water exposed mice. A, total 

As and DNA damage in bone marrow cells. B, total As and DNA damage in spleen cells. C, 

total As and DNA damage in thymus cells. D, MMA+3 and DNA damage in bone marrow 

cells. E, MMA+3 and DNA damage in spleen cells. F, MMA+3 and DNA damage in thymus 

cells.
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Figure 4. 
DNA damage in bone marrow, spleen and thymus cells treated with As+3 and MMA+3 in 

vitro for 4 h. Cells were isolated from three 13-week old C57BL/6J mice and pooled. Bone 

marrow, spleen and thymus cells were then treated with 5, 50 and 500 nM As+3 or MMA+3. 

Comet assay and FLARE assay were used to analyze the DNA damage and oxidative 

damage induced by the treatments. A, bone marrow. B, spleen. C, thymus. *Significantly 

different compared to control (p<0.05). #Significantly different compared to the Comet 

assay (p<0.05) Results are Means ± SD.
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Table 1

Mouse body weight, water, arsenic (As) intake, tissue weight, cell recovery and viability of 30 d 0 (Control), 

100 and 500 ppb As+3 in vivo drinking water exposed male C57/BL6 mice1.

Treatments Mouse body weight
(g)

Water intake (ml/d) As intake (ng/d)2

Control 27.71 ± 1.66 3.34 ± 0.11 18.50 ± 0.77

100 ppb 27.53 ± 2.69 3.68 ± 0.27 420. 54± 12.32*

500 ppb 27.50 ± 1.42 3.59 ± 0.34 2111.32 ± 323.19*

Tissue weight (mg) Cell recovery (× 106

cells)
Viability (%)

Bone
Marrow

Control 51.35 ± 12.75 86.16 ± 2.93

100 ppb 42.78 ± 4.82 88.64 ± 1.72

500 ppb 43.14 ± 8.12 87.46 ± 2.10

Spleen Control 106 ± 6.60 186.6 ± 13.39 77.72 ± 3.19

100 ppb 106 ± 6.04 183.4 ± 14.31 74.75 ± 1.71

500 ppb 103 ± 10.03 180.8 ± 30.96 76.32 ± 2.65

Thymus Control 52.32 ± 7.31 71.32 ± 14.50 87.16 ± 1.56

100 ppb 46.24 ± 5.73 69.62 ± 17.24 87.68 ± 1.20

500 ppb 40.88 ± 11.69 60.34 ± 16.85 87.98 ± 0.89

1
Mice were 9-week old when the exposure started. 5 mice (n = 5) were treated for each single dose. Drinking water was changed each week and 

water intake was calculated from the change in the weight of the water. Cell recovery and viability were obtained using a Cellometer 2000 with 
AO/PI staining. Results are Means ± SD.

2
As intake was calculated based on drinking water samples measured by Mass Spectrometry and daily water intake of each mouse.

*
Significantly different from Control (p < 0.05).
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