8 research outputs found

    Stimulus modality influences session-to-session transfer of training effects in auditory and tactile streaming-based P300 brain–computer interfaces

    Get PDF
    Despite recent successes, patients suffering from locked-in syndrome (LIS) still struggle to communicate using vision-independent brain–computer interfaces (BCIs). In this study, we compared auditory and tactile BCIs, regarding training effects and cross-stimulus-modality transfer effects, when switching between stimulus modalities. We utilized a streaming-based P300 BCI, which was developed as a low workload approach to prevent potential BCI-inefficiency. We randomly assigned 20 healthy participants to two groups. The participants received three sessions of training either using an auditory BCI or using a tactile BCI. In an additional fourth session, BCI versions were switched to explore possible cross-stimulus-modality transfer effects. Both BCI versions could be operated successfully in the first session by the majority of the participants, with the tactile BCI being experienced as more intuitive. Significant training effects were found mostly in the auditory BCI group and strong evidence for a cross-stimulus-modality transfer occurred for the auditory training group that switched to the tactile version but not vice versa. All participants were able to control at least one BCI version, suggesting that the investigated paradigms are generally feasible and merit further research into their applicability with LIS end-users. Individual preferences regarding stimulus modality should be considered

    The deca-GX3 proteins Yae1-Lto1 function as adaptors recruiting the ABC protein Rli1 for iron-sulfur cluster insertion

    No full text
    Cytosolic and nuclear iron-sulfur (Fe-S) proteins are involved in many essential pathways including translation and DNA maintenance. Their maturation requires the cytosolic Fe-S protein assembly (CIA) machinery. To identify new CIA proteins we employed systematic protein interaction approaches and discovered the essential proteins Yae1 and Lto1 as binding partners of the CIA targeting complex. Depletion of Yae1 or Lto1 results in defective Fe-S maturation of the ribosome-associated ABC protein Rli1, but surprisingly no other tested targets. Yae1 and Lto1 facilitate Fe-S cluster assembly on Rli1 in a chain of binding events. Lto1 uses its conserved C-terminal tryptophan for binding the CIA targeting complex, the deca-GX(3) motifs in both Yae1 and Lto1 facilitate their complex formation, and Yae1 recruits Rli1. Human YAE1D1 and the cancer-related ORAOV1 can replace their yeast counterparts demonstrating evolutionary conservation. Collectively, the Yae1-Lto1 complex functions as a target-specific adaptor that recruits apo-Rli1 to the generic CIA machinery. DOI: http://dx.doi.org/10.7554/eLife.08231.00
    corecore