99 research outputs found

    Sensitivity of Southern Ocean sea-ice simulations to different atmospheric forcing algorithms

    Get PDF
    Sea ice is sensitively dependent on the fluxes of energy, mass and momentum between the ocean and the atmosphere, making it worth investigating the modification of these fluxes by the respective boundary layers. Complementary to earlier investigations with a coupled sea-ice-oceanic mixed-layer model for the Southern Ocean, the atmospheric forcing in the present investigation is changed from monthly, observational data to daily, essentially modelled values computed by an operational numerical weather-prediction model. Applying these computations directly as atmospheric surface forcing to the sea-ice-oceanic mixed-layer model yields (in first order) encouraging results, indicating the general reliability of these data. As a supplement to the oceanic mixed-layer model, the fluxes derived from the atmospheric forcing are modified in a first step to include the stability dependency of the atmospheric surface-layer. Compared to the application of usual adjustment practices, this leads to improved results, especially with respect to the ice velocities in divergent ice fields. In the next step, the atmospheric forcing level is raised to the geostrophic level thus incorporating the entire atmospheric boundary layer. While the forcing fields become less dependent on the prescribed boundary conditions of the weather-prediction model, the simulations appear to be reasonable only when the near-surface wind forcing is applied, the overall roughness length is increased and the large-scale stability is reduced. This leads to important implications for coupled atmosphere-sea-ice-ocean models

    Meereismodellierung im sĂŒdlichen Ozean

    No full text
    Das von Hibler (1979) fĂŒr den Arktischen Ozean entwickelte dynamisch - thermodynamische Meereismodell wurde von Hibler und Ackley (1983) auf das Weddellmeer angewendet. Dieses Modell wurde von Lemke et al. (1990) mit dem ein-dimensionalen ozeani- schen Deckschichtmodell von Lemke (1987) gekoppelt, um den vertikalen ozeanischen WĂ€rmefluß in AbhĂ€ngigkeit von der Eisbil- dung und nachfolgender Konvektion zu beschreiben. Außerdem fĂŒhrten Owens und Lemke (1990) die Schneehöhe als weitere pro- gnostische Variable im Modell ein. In der vorliegenden Arbeit wird das so modifizierte Weddell- Meereismodell auf die Region des gesamten SĂŒdlichen Ozeans er- weitert und im ersten Teil der Arbeit mit klimatologischen Mo- nats- bzw. Jahresmittelwerten angetrieben. Die Ergebnisse des Standardlaufs werden mit Analyseergebnissen aus Satellitendaten, vereinzelten Bodenbeobachtungen bzw. -mes- sungen, und Ergebnissen aus frĂŒheren dynamisch-thermo- dynamischen Meereismodellen verglichen. Außerdem werden SensitivitĂ€tsuntersuchungen durchgefĂŒhrt, um den Einfluß verschiedener physikalischer und numerischer Parameter zu untersuchen. Da die atmosphĂ€rischen Klimatologien im Bereich des SĂŒdlichen Ozeans je nach Herkunft teilweise erheblich voneinander abweichen, wird zum Vergleich mit alternativen DatensĂ€tzen angetrieben. Schließlich wird das Modell mit stochastisch variierenden Windfeldern angetrieben, um dem Effekt tĂ€glicher VariabilitĂ€t nachzugehen. Wegen der hohen Inkonsistenz der verschiedenen atmosphĂ€rischen Antriebsfelder und der gleichzeitigen hohen SensitivitĂ€t des Modells bezĂŒglich dieser Daten (insb. der Windfelder), wird im zweiten Teil der Arbeit zunĂ€chst mit aktuellen, tĂ€glichen Analysedaten von numerischen Wettervorhersagemodellen angetrieben, die in Regionen geringer Meß- bzw. Beobachtungsdichte physikalisch konsistenter erscheinen als reine Beobachtungsdatenanalysen, die auf lnterpolationsmethoden basieren. Durch ZurĂŒckrechnen der Analyse variablen auf deren ursprĂŒngliches Niveau des AtmosphĂ€renmodells und gleichzeitiger Anwendung einer geeigneten Prandtl-Schicht Formulierung können realistische Ergebnisse erzielt werden, ohne dabei Parameter des Meereismodells auf die neuerliche Art des Antriebs anpassen zu mĂŒssen. Um eine Vorbestimmung der Lage der Eisgrenze aufgrund der im AtmosphĂ€renmodell vorgegebenen Randwerte zu vermeiden, wird schließlich der Antrieb auf das geostrophische Niveau angehoben. Dies wird durch eine zusĂ€tzliche Kopplung des Meereismodells an das ein-dimensionale atmosphĂ€rische Grenzschichtmodell von Koch (1988) realisiert. Dabei wird der Antrieb jeweils dem gleichen klimatologischen bzw. aktuellen Datensatz (s.o.) entnommen, diesmal jedoch vom 850 hpa Niveau. Die Ergebnisse aus diesem Teil der Arbeit werden mit den vorhergehenden verglichen und analysiert. Desweiteren werden wiederum diverse SensitivitĂ€tsstudien durchgefĂŒhrt und damit gleichzeitig Probleme, die mit dem höheren Antriebsniveau und der eingeschrĂ€nkten Anwendbarkeit des atmosphĂ€rischen Grenzschichtmodells zusammenhĂ€ngen, diskutiert.I. Zusammenfassung (Abstract) II. Symbol liste A. Symbole B. Indizes III. Einleitung A. Sinn und Ziel B. Vorhergehende Arbeiten C. Übergang (Gliederung) IV. Angewandte Modelle A. Meereismodell B. Deckschichtmodell des Ozeans V. Modellkonfiguration A. Kopplung B. Modellgitter C. Numerik D. Technische Daten VI. Antriebsdaten A. AtmosphĂ€re 1. Klimatologische Daten 2. Aktuelle Daten B. Ozean VII. Verifikationsdaten A. Eis 1. Bodenbeobachtungen 2. Satellitendaten 3. Ergebnisse vorhergehender Modelle B. Grenzschicht VIII. Ergebnisse mit atmosphĂ€rischem Antrieb an der OberflĂ€che A. AtmosphĂ€rischer Antrieb mit monatlichen (klimatologischen) Daten (Zyklus 4) 1. Standardexperiment 2. SensitivitĂ€tsuntersuchungen a. Ozeanische Deckschichttiefe konstant b. VernachlĂ€ssigung von Schnee c. Erhöhung der Eisfestigkeit d. Verlangsamung des Schließens von Rinnen e. VernachlĂ€ssigung der Advektion f. VernachlĂ€ssigung der geostrophischen Strömung 3. Alternative Antriebsfelder a. Wind b. Temperatur c. Niederschlag 4. Stochastische WindvariabilitĂ€t 5. Diskussion B. AtmosphĂ€rischer Antrieb mit tĂ€glichen (aktuellen) Daten (Zyklus 8) 1. Standardexperiment 2. SensitivitĂ€tsuntersuchungen a. Erhöhung der Eisfestigkeit und der Schubspannung b. Einbeziehung der atmosphĂ€rischen OberflĂ€chenschicht 3. Diskussion IV. Schlußfolgerungen aus bisherigen Ergebnissen X. Modellerweiterung A. Grenzschichtmodell der AtmosphĂ€re B. Ankopplung des Grenzschichtmodells C. Antrieb XI. Ergebnisse mit atmosphĂ€rischem Antrieb im geostrophischen Niveau A. AtmosphĂ€rischer Antrieb mit monatlichen (klimatologischen) Daten (Zyklus 5) B. AtmosphĂ€rischer Antrieb mit tĂ€glichen (aktuellen) Daten (Zyklus 6) 1. Standardexperiment 2. SensitivitĂ€tsuntersuchungen a. Reduzierung der Modellphysik b. Einfluß des Windfeldes c. Erhöhung der OberïŹ‚Ă€chenrauhigkeit d. VerhĂ€ltnis der Schubspannungskoeffizienten e. Einfluß der Winddrehung f . Erhöhung des Auftriebsflusses 3. Diskussion XII. Schlußfolgerungen und Ausblick XIII. Danksagung XIV. Literaturverzeichnis XV. Anhang: Theorie der angewandten Modelle A. Meereismodell 1. Dynamisches Teilmodell 2. KontinuitĂ€tsgleichungen 3. ThermodynamĂ­sches Teilmodell B. Deckschichtmodeil des Ozeans 1. Erhaltung von WĂ€rme und Salz 2. Parametrisierung der vertikalen Einmischung 3. Energiebilanz C. OberïŹ‚Ă€chenschicht der AtmosphĂ€re D. Grenzschichtmodell der AtmosphĂ€re XVI. Abbildunge

    Southern Ocean sea-ice simulations forced with operationally derived atmospheric analyses data

    No full text
    As a supplement to an earlier paper on a coupled sea—ice — oceanic mixed-layer [SI — OML] model for the Southern Ocean (Stössel et al.‚ 1990), the atmospheric forcing in this investigation is changed from monthly (climatological) data to daily (instantaneous) values. These data are derived from global analyses from the European Center for Medium Range Weather Forecasts (ECMWF). With these computations applied as surface forcing, results similar to the earlier ones are achieved. Adjustments of the SI-model parameters and/or the coefficients of the bulk formulas can be avoided when the forcing is raised to its originally assigned level, using an appropriate Prandtl—layer parameterization. With this extension, the model results are well comparable with observations based on operationally produced ice charts. A further rise of the atmospheric forcing to the geostrophic level by means of coupling a one—dimensional atmospheric boundary—layer [ABL] model to the SI — OML model, reduces the dependency of the results on the (climatologically) prescribed boundary conditions of the operational numerical weather- prediction [NWP] model. The simulations with this extension, however, appear to be reasonable only when the surface wind pattern is applied, the roughness length over ice and water is increased, and the stability of the ABL over ice is generally reduced

    Ocean-sea-ice coupling in a global ocean general circulation model

    No full text
    A global ocean general circulation model has been coupled with a dynamic-thermodynamic sea-ice model. This model has been spun-up in a 1000 year integration using daily atmosphere model data. Main water masses and currents are reproduced as well as the seasonal characteristics of the ice cover of the Northern and Southern Hemispheres. Model results for the Southern Ocean, however, show the ice cover as too thin, and there are large permanent polynyas in the Weddell and Ross Seas. These polynyas are due to a large upward oceanic heat flux caused by haline rejection during the freezing of sea ice. Sensitivity studies were performed to test several ways of treating the sea-surface salinity and the rejected brine. The impact on the ice cover, water-mass characteristics, and ocean circulation are described

    Monte Carlo climate change forecasts with a global coupled ocean-atmosphere model

    No full text
    Four time-dependent greenhouse warming experiments were performed with the same global coupled atmosphere-ocean model, but with each simulation using initial conditions from different ''snapshots'' of the control run climate. The radiative forcing - the increase in equivalent CO2 concentrations from 19852035 specified in the Intergovernmental Panel on Climate Change (IPCC) scenario A - was identical in all four 50-year integrations. This approach to climate change experiments is called the Monte Carlo technique and is analogous to a similar experimental set-up used in the field of extended range weather forecasting. Despite the limitation of a very small sample size, this approach enables the estimation of both a mean response and the ''between-experiment'' variability, information which is not available from a single integration. The use of multiple realizations provides insights into the stability of the response, both spatially, seasonally and in terms of different climate variables. The results indicate that the time evolution of the global mean warming signal is strongly dependent on the initial state of the climate system. While the individual members of the ensemble show considerable variation in the pattern and amplitude of near-surface temperature change after 50 years, the ensemble mean climate change pattern closely resembles that obtained in a 100-year integration performed with the same model. In global mean terms, the climate change signals for near surface temperature, the hydrological. cycle and sea level significantly exceed the variability among the members of the ensemble. Due to the high internal variability of the modelled climate system, the estimated detection time of the global mean temperature change signal is uncertain by at least one decade. While the ensemble mean surface temperature and sea level fields show regionally significant responses to greenhouse-gas forcing, it is not possible to identify a significant response in the precipitation and soil moisture fields, variables which are spatially noisy and characterized by large variability between the individual integrations

    Morphology of the earliest reconstructable tetrapod Parmastega aelidae.

    Get PDF
    The known diversity of tetrapods of the Devonian period has increased markedly in recent decades, but their fossil record consists mostly of tantalizing fragments1-15. The framework for interpreting the morphology and palaeobiology of Devonian tetrapods is dominated by the near complete fossils of Ichthyostega and Acanthostega; the less complete, but partly reconstructable, Ventastega and Tulerpeton have supporting roles2,4,16-34. All four of these genera date to the late Famennian age (about 365-359 million years ago)-they are 10 million years younger than the earliest known tetrapod fragments5,10, and nearly 30 million years younger than the oldest known tetrapod footprints35. Here we describe Parmastega aelidae gen. et sp. nov., a tetrapod from Russia dated to the earliest Famennian age (about 372 million years ago), represented by three-dimensional material that enables the reconstruction of the skull and shoulder girdle. The raised orbits, lateral line canals and weakly ossified postcranial skeleton of P. aelidae suggest a largely aquatic, surface-cruising animal. In Bayesian and parsimony-based phylogenetic analyses, the majority of trees place Parmastega as a sister group to all other tetrapods

    Thermodynamics in the hydrologic response: Travel time formulation and application to Alpine catchments

    Get PDF
    This paper presents a spatially-explicit model for hydro-thermal response simulations of Alpine catchments, accounting for advective and non-advective energy fluxes in stream networks characterized by arbitrary degrees of geomorphological complexity. The relevance of the work stems from the increasing scientific interest concerning the impacts of the warming climate on water resources management and temperature-controlled ecological processes. The description of the advective energy uxes is cast in a travel time formulation of water and energy transport, resulting in a closed form solution for water temperature evolution in the soil compartment. The application to Alpine catchments hinges on the boundary conditions provided by the fully-distributed and physically-based snow model Alpine3D. The performance of the simulations is illustrated by comparing modeled and measured hydrographs and thermographs at the outlet of the Dischma catchment (45 km2) in the Swiss Alps. The Monte Carlo calibration shows that the model is robust and that a simultaneous fitting of stream ow and stream temperature reduces the uncertainty in the hydrological parameters estimation. The calibrated model also provides a good fit to the measurements in the validation period, suggesting that it could be employed for predictive applications, both for hydrological and ecological purposes. The temperature of the subsurface flow, as described by the proposed travel time formulation, proves warmer than the stream temperature during winter and colder during summer. Finally, the spatially-explicit results of the model during snowmelt show a notable hydro-thermal spatial variability in the river network, owing to the small spatial correlation of infilltration and meteorological forcings in Alpine regions

    Circulation dynamics and its influence on European and Mediterranean January–April climate over the past half millennium: results and insights from instrumental data, documentary evidence and coupled climate models

    Full text link
    • 

    corecore