1,083 research outputs found

    π\pi-Electron Ferromagnetism in Metal Free Carbon Probed by Soft X-Ray Dichroism

    Full text link
    Elemental carbon represents a fundamental building block of matter and the possibility of ferromagnetic order in carbon attracted widespread attention. However, the origin of magnetic order in such a light element is only poorly understood and has puzzled researchers. We present a spectromicroscopy study at room temperature of proton irradiated metal free carbon using the elemental and chemical specificity of x-ray magnetic circular dichroism (XMCD). We demonstrate that the magnetic order in the investigated system originates only from the carbon π\pi-electron system.Comment: 10 pages 3 color figure

    The role of hydrogen in room-temperature ferromagnetism at graphite surfaces

    Full text link
    We present a x-ray dichroism study of graphite surfaces that addresses the origin and magnitude of ferromagnetism in metal-free carbon. We find that, in addition to carbon π\pi states, also hydrogen-mediated electronic states exhibit a net spin polarization with significant magnetic remanence at room temperature. The observed magnetism is restricted to the top \approx10 nm of the irradiated sample where the actual magnetization reaches 15 \simeq 15 emu/g at room temperature. We prove that the ferromagnetism found in metal-free untreated graphite is intrinsic and has a similar origin as the one found in proton bombarded graphite.Comment: 10 pages, 5 figures, 1 table, submitted to New Journal of Physic

    Magnetic versus crystal field linear dichroism in NiO thin films

    Full text link
    We have detected strong dichroism in the Ni L2,3L_{2,3} x-ray absorption spectra of monolayer NiO films. The dichroic signal appears to be very similar to the magnetic linear dichroism observed for thicker antiferromagnetic NiO films. A detailed experimental and theoretical analysis reveals, however, that the dichroism is caused by crystal field effects in the monolayer films, which is a non trivial effect because the high spin Ni 3d83d^{8} ground state is not split by low symmetry crystal fields. We present a practical experimental method for identifying the independent magnetic and crystal field contributions to the linear dichroic signal in spectra of NiO films with arbitrary thicknesses and lattice strains. Our findings are also directly relevant for high spin 3d53d^{5} and 3d33d^{3} systems such as LaFeO3_{3}, Fe2_{2}O3_{3}, VO, LaCrO3_{3}, Cr2_{2}O3_{3}, and Mn4+^{4+} manganate thin films

    Field-induced domain wall propagation velocity in magnetic nanowires

    Full text link
    A thory of field-induced domain wall (DW) propagation is developed. The theory not only explains why a DW in a defect-free nanowire must propagate at a finite velocity, but also provides a proper definition of DW propagation velocity. This definition, valid for an arbitrary DW structure, allows one to compute the instantaneous DW velocity in a meaningful way even when the DW is not moving as a rigid body. A new velocity-field formula beyond the Walker breakdown field, which is in excellent agreement with both experiments and numerical simulations, is derived

    On rationality of the intersection points of a line with a plane quartic

    Full text link
    We study the rationality of the intersection points of certain lines and smooth plane quartics C defined over F_q. For q \geq 127, we prove the existence of a line such that the intersection points with C are all rational. Using another approach, we further prove the existence of a tangent line with the same property as soon as the characteristic of F_q is different from 2 and q \geq 66^2+1. Finally, we study the probability of the existence of a rational flex on C and exhibit a curious behavior when the characteristic of F_q is equal to 3.Comment: 17 pages. Theorem 2 now includes the characteristic 2 case; Conjecture 1 from the previous version is proved wron

    Direct Observation of Site-specific Valence Electronic Structure at Interface: SiO2/Si Interface

    Full text link
    Atom specific valence electronic structures at interface are elucidated successfully using soft x-ray absorption and emission spectroscopy. In order to demonstrate the versatility of this method, we investigated SiO2/Si interface as a prototype and directly observed valence electronic states projected at the particular atoms of the SiO2/Si interface; local electronic structure strongly depends on the chemical states of each atom. In addition we compared the experimental results with first-principle calculations, which quantitatively revealed the interfacial properties in atomic-scale.Comment: 4 pages, 3 figure

    Theory of x-ray absorption by laser-aligned symmetric-top molecules

    Full text link
    We devise a theory of x-ray absorption by symmetric-top molecules which are aligned by an intense optical laser. Initially, the density matrix of the system is composed of the electronic ground state of the molecules and a thermal ensemble of rigid-rotor eigenstates. We formulate equations of motion of the two-color (laser plus x rays) rotational-electronic problem. The interaction with the laser is assumed to be nonresonant; it is described by an electric dipole polarizability tensor. X-ray absorption is approximated as a one-photon process. It is shown that the equations can be separated such that the interaction with the laser can be treated independently of the x rays. The laser-only density matrix is propagated numerically. After each time step, the x-ray absorption is calculated. We apply our theory to study adiabatic alignment of bromine molecules (Br2). The required dynamic polarizabilities are determined using the ab initio linear response methods coupled-cluster singles (CCS), second-order approximate coupled-cluster singles and doubles (CC2), and coupled-cluster singles and doubles (CCSD). For the description of x-ray absorption on the sigma_g 1s --> sigma_u 4p resonance, a parameter-free two-level model is used for the electronic structure of the molecules. Our theory opens up novel perspectives for the quantum control of x-ray radiation.Comment: 14 pages, 4 figures, 1 table, RevTeX4, revise

    Magnetization Dynamics, Gyromagnetic Relation, and Inertial Effects

    Full text link
    The gyromagnetic relation - i.e. the proportionality between the angular momentum L\vec L (defined by an inertial tensor) and the magnetization M\vec M - is evidence of the intimate connections between the magnetic properties and the inertial properties of ferromagnetic bodies. However, inertia is absent from the dynamics of a magnetic dipole (the Landau-Lifshitz equation, the Gilbert equation and the Bloch equation contain only the first derivative of the magnetization with respect to time). In order to investigate this paradoxical situation, the lagrangian approach (proposed originally by T. H. Gilbert) is revisited keeping an arbitrary nonzero inertial tensor. A dynamic equation generalized to the inertial regime is obtained. It is shown how both the usual gyromagnetic relation and the well-known Landau-Lifshitz-Gilbert equation are recovered at the kinetic limit, i.e. for time scales above the relaxation time τ\tau of the angular momentum.Comment: 10 pages, 1 figur

    Three-dimensional magnetic flux-closure patterns in mesoscopic Fe islands

    Get PDF
    We have investigated three-dimensional magnetization structures in numerous mesoscopic Fe/Mo(110) islands by means of x-ray magnetic circular dichroism combined with photoemission electron microscopy (XMCD-PEEM). The particles are epitaxial islands with an elongated hexagonal shape with length of up to 2.5 micrometer and thickness of up to 250 nm. The XMCD-PEEM studies reveal asymmetric magnetization distributions at the surface of these particles. Micromagnetic simulations are in excellent agreement with the observed magnetic structures and provide information on the internal structure of the magnetization which is not accessible in the experiment. It is shown that the magnetization is influenced mostly by the particle size and thickness rather than by the details of its shape. Hence, these hexagonal samples can be regarded as model systems for the study of the magnetization in thick, mesoscopic ferromagnets.Comment: 12 pages, 11 figure
    corecore