53 research outputs found

    Population Inversion in Monolayer and Bilayer Graphene

    Get PDF
    The recent demonstration of saturable absorption and negative optical conductivity in the Terahertz range in graphene has opened up new opportunities for optoelectronic applications based on this and other low dimensional materials. Recently, population inversion across the Dirac point has been observed directly by time- and angle-resolved photoemission spectroscopy (tr-ARPES), revealing a relaxation time of only ~ 130 femtoseconds. This severely limits the applicability of single layer graphene to, for example, Terahertz light amplification. Here we use tr-ARPES to demonstrate long-lived population inversion in bilayer graphene. The effect is attributed to the small band gap found in this compound. We propose a microscopic model for these observations and speculate that an enhancement of both the pump photon energy and the pump fluence may further increase this lifetime.Comment: 18 pages, 6 figure

    Snapshots of non-equilibrium Dirac carrier distributions in graphene

    Full text link
    The optical properties of graphene are made unique by the linear band structure and the vanishing density of states at the Dirac point. It has been proposed that even in the absence of a semiconducting bandgap, a relaxation bottleneck at the Dirac point may allow for population inversion and lasing at arbitrarily long wavelengths. Furthermore, efficient carrier multiplication by impact ionization has been discussed in the context of light harvesting applications. However, all these effects are difficult to test quantitatively by measuring the transient optical properties alone, as these only indirectly reflect the energy and momentum dependent carrier distributions. Here, we use time- and angle-resolved photoemission spectroscopy with femtosecond extreme ultra-violet (EUV) pulses at 31.5 eV photon energy to directly probe the non-equilibrium response of Dirac electrons near the K-point of the Brillouin zone. In lightly hole-doped epitaxial graphene samples, we explore excitation in the mid- and near-infrared, both below and above the minimum photon energy for direct interband transitions. While excitation in the mid-infrared results only in heating of the equilibrium carrier distribution, interband excitations give rise to population inversion, suggesting that terahertz lasing may be possible. However, in neither excitation regime do we find indication for carrier multiplication, questioning the applicability of graphene for light harvesting. Time-resolved photoemission spectroscopy in the EUV emerges as the technique of choice to assess the suitability of new materials for optoelectronics, providing quantitatively accurate measurements of non-equilibrium carriers at all energies and wavevectors.Comment: 16 pages, 7 figure

    Human Engineered Heart Tissue as a Versatile Tool in Basic Research and Preclinical Toxicology

    Get PDF
    Human embryonic stem cell (hESC) progenies hold great promise as surrogates for human primary cells, particularly if the latter are not available as in the case of cardiomyocytes. However, high content experimental platforms are lacking that allow the function of hESC-derived cardiomyocytes to be studied under relatively physiological and standardized conditions. Here we describe a simple and robust protocol for the generation of fibrin-based human engineered heart tissue (hEHT) in a 24-well format using an unselected population of differentiated human embryonic stem cells containing 30–40% α-actinin-positive cardiac myocytes. Human EHTs started to show coherent contractions 5–10 days after casting, reached regular (mean 0.5 Hz) and strong (mean 100 ”N) contractions for up to 8 weeks. They displayed a dense network of longitudinally oriented, interconnected and cross-striated cardiomyocytes. Spontaneous hEHT contractions were analyzed by automated video-optical recording and showed chronotropic responses to calcium and the ÎČ-adrenergic agonist isoprenaline. The proarrhythmic compounds E-4031, quinidine, procainamide, cisapride, and sertindole exerted robust, concentration-dependent and reversible decreases in relaxation velocity and irregular beating at concentrations that recapitulate findings in hERG channel assays. In conclusion this study establishes hEHT as a simple in vitro model for heart research

    Thymosin beta 4 Improves Differentiation and Vascularization of EHTs

    Get PDF
    Induced pluripotent stem cells (iPSC) constitute a powerful tool to study cardiac physiology and represents a promising treatment strategy to tackle cardiac disease. However, iPSCs remain relatively immature after differentiation. Additionally, engineered heart tissue (EHT) has been investigated as a therapy option in preclinical disease models with promising results, although their vascularization and functionality leave room for improvement. Thymosin beta 4 (T beta 4) has been shown to promote the differentiation of progenitor cell lines to cardiomyocytes while it also induces angiogenic sprouting and vascular maturation. We examined the potential impact of T beta 4 to enhance maturation of cardiomyocytes from iPSCs. Assessing the expression of transcription factors associated with cardiac differentiation, we were able to demonstrate the increased generation of cells displaying cardiomyocyte characteristics in vitro. Furthermore, we demonstrated, in a zebrafish model of embryonic vascular development, that T beta 4 is crucial for the proper execution of lymphatic and angiogenic vessel sprouting. Finally, utilizing T beta 4-transduced EHTs generated from mice genetically engineered to label endothelial cells in vitro, we show that treatment with T beta 4 promotes vascularization and contractility in EHTs, highlighting T beta 4 as a growth factor improving the formation of cardiomyocytes from iPSC and enhancing the performance of EHTs generated from neonatal cardiomyocytes

    The Swiss Approach - feasibility of a national low-dose CT lung cancer screening program.

    Get PDF
    BACKGROUND Lung cancer is the leading cause of cancer-related deaths in Switzerland. Despite this, there is no lung cancer screening program in the country. In the United States, low-dose computed tomography (LDCT) lung cancer screening is partially established and endorsed by guidelines. Moreover, evidence is growing that screening reduces lung cancer-related mortality and this was recently shown in a large European randomized controlled trial. Implementation of a lung cancer screening program, however, is challenging and depends on many country-specific factors. The goal of this article is to outline a potential Swiss lung cancer screening program. FRAMEWORK An exhaustive literature review on international screening models as well as interviews and site visits with international experts were initiated. Furthermore, workshops and interviews with national experts and stakeholders were conducted to share experiences and to establish the basis for a national Swiss lung cancer screening program. SCREENING APPROACH General practitioners, pulmonologists and the media should be part of the recruitment process. Decentralisation of the screening might lead to a higher adherence rate. To reduce stigmatisation, the screening should be integrated in a "lung health check". Standardisation and a common quality level are mandatory. The PLCOm2012 risk calculation model with a threshold of 1.5% risk for developing cancer in the next six years should be used in addition to established inclusion criteria. Biennial screening is preferred. LUNG RADS and NELSON+ are applied as classification models for lung nodules. CONCLUSION Based on data from recent studies, literature research, a health technology assessment, the information gained from this project and a pilot study the Swiss Interest Group for lung cancer screening (CH-LSIG) recommends the timely introduction of a systematic lung cancer screening program in Switzerland. The final decision is for the Swiss Cancer Screening Committee to make

    The Swiss Approach - feasibility of a national low-dose CT lung cancer screening program

    Full text link
    BACKGROUND Lung cancer is the leading cause of cancer-related deaths in Switzerland. Despite this, there is no lung cancer screening program in the country. In the United States, low-dose computed tomography (LDCT) lung cancer screening is partially established and endorsed by guidelines. Moreover, evidence is growing that screening reduces lung cancer-related mortality and this was recently shown in a large European randomized controlled trial. Implementation of a lung cancer screening program, however, is challenging and depends on many country-specific factors. The goal of this article is to outline a potential Swiss lung cancer screening program. FRAMEWORK An exhaustive literature review on international screening models as well as interviews and site visits with international experts were initiated. Furthermore, workshops and interviews with national experts and stakeholders were conducted to share experiences and to establish the basis for a national Swiss lung cancer screening program. SCREENING APPROACH General practitioners, pulmonologists and the media should be part of the recruitment process. Decentralisation of the screening might lead to a higher adherence rate. To reduce stigmatisation, the screening should be integrated in a "lung health check". Standardisation and a common quality level are mandatory. The PLCOm2012 risk calculation model with a threshold of 1.5% risk for developing cancer in the next six years should be used in addition to established inclusion criteria. Biennial screening is preferred. LUNG RADS and NELSON+ are applied as classification models for lung nodules. CONCLUSION Based on data from recent studies, literature research, a health technology assessment, the information gained from this project and a pilot study the Swiss Interest Group for lung cancer screening (CH-LSIG) recommends the timely introduction of a systematic lung cancer screening program in Switzerland. The final decision is for the Swiss Cancer Screening Committee to make

    Effectiveness of a home-based re-injury prevention program on motor control, return to sport and recurrence rates after anterior cruciate ligament reconstruction: study protocol for a multicenter, single-blind, randomized controlled trial (PReP)

    Get PDF
    Background: Although anterior cruciate ligament (ACL) tear-prevention programs may be effective in the (secondary) prevention of a subsequent ACL injury, little is known, yet, on their effectiveness and feasibility. This study assesses the effects and implementation capacity of a secondary preventive motor-control training (the Stop-X program) after ACL reconstruction. Methods and design: A multicenter, single-blind, randomized controlled, prospective, superiority, two-arm design is adopted. Subsequent patients (18–35 years) with primary arthroscopic unilateral ACL reconstruction with autologous hamstring graft are enrolled. Postoperative guideline rehabilitation plus Classic follow-up treatment and guideline rehabilitation plus the Stop-X intervention will be compared. The onset of the Stop-X program as part of the postoperative follow-up treatment is individualized and function based. The participants must be released for the training components. The endpoint is the unrestricted return to sport (RTS) decision. Before (where applicable) reconstruction and after the clearance for the intervention (aimed at 4–8 months post surgery) until the unrestricted RTS decision (but at least until 12 months post surgery), all outcomes will be assessed once a month. Each participant is consequently measured at least five times to a maximum of 12 times. Twelve, 18 and 24 months after the surgery, follow-up-measurements and recurrence monitoring will follow. The primary outcome assessement (normalized knee-separation distance at the Drop Jump Screening Test (DJST)) is followed by the functional secondary outcomes assessements. The latter consist of quality assessments during simple (combined) balance side, balance front and single-leg hops for distance. All hop/jump tests are self-administered and filmed from the frontal view (3-m distance). All videos are transferred using safe big content transfer and subsequently (and blinded) expertly video-rated. Secondary outcomes are questionnaires on patient-reported knee function, kinesiophobia, RTS after ACL injury and training/therapy volume (frequency – intensity – type and time). All questionnaires are completed online using the participants’ pseudonym only. Group allocation is executed randomly. The training intervention (Stop-X arm) consists of self-administered home-based exercises. The exercises are step-wise graduated and follow wound healing and functional restoration criteria. The training frequency for both arms is scheduled to be three times per week, each time for a 30 min duration. The program follows current (secondary) prevention guidelines. Repeated measurements gain-score analyses using analyses of (co-)variance are performed for all outcomes. Trial registration: German Clinical Trials Register, identification number DRKS00015313. Registered on 1 October 2018
    • 

    corecore