9 research outputs found

    Submesoscale Dynamics in the Gulf of Aden and the Gulf of Oman

    No full text
    We have investigated the surface and subsurface submesoscale dynamics in the Gulf of Aden and the Gulf of Oman. Our results are based on the analyses of regional numerical simulations performed with a primitive equation model (HYCOM) at submesoscale permitting horizontal resolution. A model zoom for each gulf was embedded in a regional mesoscale-resolving simulation. In the Gulf of Aden and the Gulf of Oman, the interactions of mesoscale structures and fronts instabilities form submesoscale eddies and filaments. Rotational energy spectra show that the Gulf of Aden has a higher ratio of submesoscale to mesocale energy than the Gulf of Oman. Fast waves (internal gravity waves, tidal waves, Kelvin waves) and slow waves (Rossby waves) were characterized via energy spectra of the divergent velocity. Local upwelling systems which shed cold filaments, coastal current instabilities at the surface, and baroclinic instability at capes in subsurface were identified as generators of submesocale structures. In particular, the Ras al Hamra and Ras al Hadd capes in the Gulf of Oman, and the Cape of Berbera in the Gulf of Aden, are loci of submesoscale eddy generation. To determine the instability mechanisms involved in these generations, we diagnosed the Ertel potential vorticity and the energy conversion terms: the horizontal and vertical Reynolds stresses and the vertical buoyancy flux. Finally, the impacts of the subsurface submesoscale eddy production at capes on the diffusion and fate of the Red Sea Water (in the Gulf of Aden) and the Persian Gulf Water (in the Gulf of Oman) are highlighte

    On the dynamics of an idealised bottom density current overflowing in a semi-enclosed basin: mesoscale and submesoscale eddies generation

    No full text
    The Red Sea Water enters the Gulf of Aden through the Strait of Bab El Mandeb as a density current. The Red Sea Water subsequently spreads into the Gulf of Aden under the influence of surface mesoscale eddies, which dominate the surface flow, of topographic features such as rift and capes, and of the monsoon regimes. The dynamics of a bottom density current overflowing in a semi-enclosed basin, as the Red Sea Water outflows in the Gulf of Aden, is investigated by performing idealised numerical simulations, at submesoscale resolution, in which we progressively add topographic and dynamical elements. The rift and cape play an important role, respectively, on the vertical and the horizontal mixing as well as baroclinic and barotropic instabilities undergone by the bottom density current. Mesoscale and submesoscale eddies are generated depending on the model configuration. In the presence of surface mesoscale eddies, the bottom density current water is mainly advected at their periphery. In winter, both mesoscale and submesoscale eddies are generated, while in summer only submesoscale eddies are present. Finally, to put our results based on idealised numerical simulations and Lagrangian experiments in perspective, we analyse the trajectories of three Argo floats, deployed in the Rift of Tadjurah. Clues of submesoscale eddies generation at capes are observed which is in agreement with our idealised numerical simulations

    Life cycle of mesoscale eddies in the Gulf of Aden

    No full text
    International audienceThe Red Sea Water is a warm and salty water produced in the Red Sea by evaporation induced by strong solar radiation. This dense water mass exits the Red Sea through the Strait of Bab El Mandeb, and enters the Gulf of Aden as a density current between 400 and 1000 metre depth. In the Gulf of Aden, in situ and satellites observations have shown the impact of the deeply reaching eddies dominating the mesoscale dynamics, on the spreading of the Red Sea Water. In this paper, we study the life cycle of these mesoscale eddies in the Gulf of Aden by using a regional primitive equation model at mesoscale resolution, and an eddy-tracking algorithm. The mesoscale anticyclonic eddies are formed at the mouth of the Gulf of Aden, and subsequently drift westward into the gulf. Mesoscale anticyclones are long-lived compared to the cyclones. The cyclones result from the interaction of anticyclones with the coast and the sloping topography. The wind stress, the bathymetry and the surrounding eddy field drive the life cycle of eddies. Finally, Kelvin and internal waves are triggered along the northern and southern coasts

    Observations of a Deep Submesoscale Cyclonic Vortex in the Arabian Sea

    No full text
    Submesoscale coherent vortices (SCVs) are numerous in high-resolution numerical simulations, but their observations are scarce. Among the few in situ available measurements of SCVs, a vast majority concern anticyclones. No cyclonic SCV with large dynamical Rossby number (|zeta/f| > 1) has ever been sampled. This suggested that such small cyclones may lack robustness. Here, we present in situ measurements of an intense cyclonic SCV in the Arabian Sea. This eddy lay at 600 m depth, with a Rossby numberRo=O(1)and a dynamical Rossby number|zeta/f| > 1.5. This cyclone was most likely generated at the mouth of the Gulf of Aden. It trapped and advected Red Sea Water, from there on. This highlights the role of deep SCVs in the spreading of salty waters across the Arabian Sea

    MODÉLISATION DE LA CIRCULATION OCÉANIQUE EN MANCHE, GOLFE DE GASCOGNE, OUEST-PORTUGAL ET GOLFE DE CADIX

    No full text
    ISSN 0373-3829 ASCLThe MOUTON project aims at constructing a numerical system to reproduce the oceanic circulation in restricted areas. In this framework, the HYCOM (HYbrid Coordinate Ocean Model) numerical model was improved and used to reproduce many oceanic processes that are listed here. The validation of the system is based on observations obtained during dedicated campaigns at sea.The area over which the system was tested is the Manche (English Channel), the bay of Biscay,West Portugal and the gulf of Cadiz. The results from the numerical model agree well with the observations
    corecore