68 research outputs found

    Intérêts des cultures in vitro de cellules souches et d’organoïdes dans le cadre d’études toxicologiques

    Get PDF
    La toxicité de notre environnement et son impact sur la santé préoccupent de plus en plus la population. Certains polluants présents dans l’environnement peuvent affecter l’ensemble de l’environnement et des chaînes trophiques. Dans certains cas, ils peuvent affecter les animaux sauvages, les animaux domestiques, jusqu’à un transfert au sein de l’espèce humaine. Une intoxication correspond à une « introduction ou bio-accumulation d’une substance toxique dans l’organisme ». L’effet de ces substances toxiques est donc important à évaluer pour anticiper ses conséquences sur les organismes. Selon le modèle utilisé, ces évaluations peuvent contenir des biais importants. En effet le métabolisme est différent d’un organisme à l’autre, et donc la capacité à gérer un toxique de l’environnement, à le bio-accumuler ou à l’éliminer est spécifique de l’espèce. La toxicité pour l’animal les assimilant et la disponibilité de ces substances lors de la consommation humaine sont donc très variables. Cette problématique est retrouvée dans un autre contexte toxicologique, celui des drogues médicamenteuses. L’étude toxicologique devrait donc se faire de façon spécifique à l’espèce ciblée, y compris pour l’espèce humaine. En effet un écart important existe entre les résultats obtenus lors des phases pré-cliniques et ceux obtenus lors des essais cliniques. Par ailleurs l’utilisation des modèles animaux fait l’objet d’une réglementation au sein de l’union européenne qui s’attache particulièrement à la limitation de l’utilisation des animaux à des fins scientifiques quand cela est possible. Dans ces contextes se place toute l’importance de méthodes in vitro qui se sont développées au cours des dernières décennies grâce à l’avancée des connaissances fondamentales portant sur les cellules souches, ainsi que des avancées techniques qui y ont été associées. Ces méthodes ont permis la production de cultures en 3 dimensions mimant les structures réelles des organismes, d’où leur nom d’organoïdes. Ces outils deviennent des éléments clés des approches toxicologiques, qu’elles soient liées aux problèmes des expositions à des toxiques ou aux études précliniques humaines et vétérinaires

    Omp25-dependent engagement of SLAMF1 by Brucella abortus in dendritic cells limits acute inflammation and favours bacterial persistence in vivo

    Get PDF
    The strategies by which intracellular pathogenic bacteria manipulate innate immunity to establish chronicity are poorly understood. Here, we show that Brucella abortus outer membrane protein Omp25 specifically binds the immune cell receptor SLAMF1 in vitro. The Omp25-dependent engagement of SLAMF1 by B. abortus limits NF-κB translocation in dendritic cells (DCs) with no impact on Brucella intracellular trafficking and replication. This in turn decreases pro-inflammatory cytokine secretion and impairs DC activation. The Omp25-SLAMF1 axis also dampens the immune response without affecting bacterial replication in vivo during the acute phase of Brucella infection in a mouse model. In contrast, at the chronic stage of infection, the Omp25/SLAMF1 engagement is essential for Brucella persistence. Interaction of a specific bacterial protein with an immune cell receptor expressed on the DC surface at the acute stage of infection is thus a powerful mechanism to support microbe settling in its replicative niche and progression to chronicity.Fil: Degos, Clara. Inserm; Francia. Centre National de la Recherche Scientifique; FranciaFil: Hysenaj, Lisiena. Inserm; Francia. Centre National de la Recherche Scientifique; FranciaFil: Gonzalez Espinoza, Gabriela. Inserm; Francia. Centre National de la Recherche Scientifique; FranciaFil: Arce Gorvel, Vilma. Inserm; Francia. Centre National de la Recherche Scientifique; FranciaFil: Gagnaire, Aurélie. Inserm; Francia. Centre National de la Recherche Scientifique; FranciaFil: Papadopoulos, Alexia. Inserm; Francia. Centre National de la Recherche Scientifique; FranciaFil: Pasquevich, Karina Alejandra. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Méresse, Stéphane. Inserm; Francia. Centre National de la Recherche Scientifique; FranciaFil: Cassataro, Juliana. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Mémet, Sylvie. Inserm; Francia. Centre National de la Recherche Scientifique; FranciaFil: Gorvel, Jean Pierre. Inserm; Francia. Centre National de la Recherche Scientifique; Franci

    Sensing and Adaptation to Low pH Mediated by Inducible Amino Acid Decarboxylases in Salmonella

    Get PDF
    During the course of infection, Salmonella enterica serovar Typhimurium must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments. Three low pH inducible amino acid decarboxylases were annotated in the genome of S. Typhimurium, AdiA, CadA and SpeF, which are specific for arginine, lysine and ornithine, respectively. In this study, we characterized and compared the contributions of those enzymes in response to acidic challenges. Individual mutants as well as a strain deleted for the three genes were tested for their ability (i) to survive an extreme acid shock, (ii) to grow at mild acidic pH and (iii) to infect the mouse animal model. We showed that the lysine decarboxylase CadA had the broadest range of activity since it both had the capacity to promote survival at pH 2.3 and growth at pH 4.5. The arginine decarboxylase AdiA was the most performant in protecting S. Typhimurium from a shock at pH 2.3 and the ornithine decarboxylase SpeF conferred the best growth advantage under anaerobiosis conditions at pH 4.5. We developed a GFP-based gene reporter to monitor the pH of the environment as perceived by S. Typhimurium. Results showed that activities of the lysine and ornithine decarboxylases at mild acidic pH did modify the local surrounding of S. Typhimurium both in culture medium and in macrophages. Finally, we tested the contribution of decarboxylases to virulence and found that these enzymes were dispensable for S. Typhimurium virulence during systemic infection. In the light of this result, we examined the genomes of Salmonella spp. normally responsible of systemic infection and observed that the genes encoding these enzymes were not well conserved, supporting the idea that these enzymes may be not required during systemic infection

    Kinesin regulation by Salmonella.

    No full text
    International audienceAs the result of their adaptation to the host, intracellular pathogens have evolved mechanisms to usurp and take the control of eukaryotic processes. In the case of Salmonella, this is in part achieved through the cytoplasmic translocation of bacterial effectors capable of acting on the biology of infected cells. These bacterial effectors might have enzymatic activities or target eukaryotic proteins. We have identified two Salmonella effectors that target the plus-end directed microtubule motor kinesin-1. PipB2 is a Salmonella vacuole-specific cargo adaptor for kinesin-1 while SifA binds the host protein SKIP, which interacts with the microtubule motor. SKIP is a large, multi domain protein of unknown function. Our recent investigations show that SKIP regulates the positioning of late endosomal compartments in a microtubules and kinesin-1 dependent manner. Moreover they indicate that SKIP activates the microtubule motor both in the context of infected and non-infected cells. Here we review these recent results and propose a model for the Salmonella effector-mediated regulation of kinesin-1 activity

    Endomembrane remodeling and dynamics in Salmonella infection

    No full text
    International audienceSalmonellae are bacteria that cause moderate to severe infections in humans, depending on the strain and the immune status of the infected host. These pathogens have the particularity of residing in the cells of the infected host. They are usually found in a vacuolar compartment that the bacteria shape with the help of effector proteins. Following invasion of a eukaryotic cell, the bacterial vacuole undergoes maturation characterized by changes in localization, composition and morphology. In particular, membrane tubules stretching over the microtubule cytoskeleton are formed from the bacterial vacuole. Although these tubules do not occur in all infected cells, they are functionally important and promote intracellular replication. This review focuses on the role and significance of membrane compartment remodeling observed in infected cells and the bacterial and host cell pathways involved

    Salmonella-induced tubular networks.

    No full text
    International audienceSalmonella virulence relies on its capacity to replicate inside various cell types in a membrane-bound compartment, the Salmonella-containing vacuole (SCV). A unique feature of Salmonella-infected cells is the presence of tubular structures originating from and connected to the SCV, which often extend throughout the cell cytoplasm. These tubules include the well-studied Salmonella-induced filaments (SIFs), enriched in lysosomal membrane proteins. However, recent studies revealed that the Salmonella-induced tubular network is more extensive than previously thought and includes three types of tubules distinct from SIFs: sorting nexin tubules, Salmonella-induced secretory carrier membrane protein 3 (SCAMP3) tubules and lysosome-associated membrane protein 1 (LAMP1)-negative tubules. In this review, we examine the molecular mechanisms involved in the formation of Salmonella-induced tubular networks and discuss the importance of the tubules for Salmonella virulence and establishment of a Salmonella intracellular replicative niche

    The roles of tetraspanins in bacterial infections

    No full text
    International audienceTetraspanins, a wide family composed of 33 transmembrane proteins, are associated with different types of proteins through which they arbitrate important cellular processes such as fusion, adhesion, invasion, tissue differentiation and immunological responses. Tetraspanins share a comparable structural design, which consists of four hydrophobic transmembrane domains with cytoplasmic and extracellular loops. They cooperate with different proteins, including other tetraspanins, receptors or signalling proteins to compose functional complexes at the cell surface, designated tetraspanin-enriched microdomains (TEM). Increasing evidences establish that tetraspanins are exploited by numerous intracellular pathogens as a doorway for entering and replicating within human cells. Although previous surveys focused mainly on viruses and parasites, it is now becoming clear that bacteria interact with tetraspanins, using TEM as a "gateway" to infection. In this review, we examine the biological functions of tetraspanins that are relevant to bacterial infective procedures and consider the available data that reveal how different bacteria benefit from host cell tetraspanins in infection and in the pathogenesis of diseases. We will also emphasise the stimulating potentials of targeting tetraspanins for preventing bacterial infectious diseases, using specific neutralising antibodies or anti-adhesion peptide-based therapies. Such innovative therapeutic opportunities may deliver alternatives for fighting difficult-to-manage and drug-resistant bacterial pathogens
    • …
    corecore