22 research outputs found

    A new parameterization of the reionisation history

    Full text link
    Motivated by the current constraints on the epoch of reionisation from recent cosmic microwave background observations, ionising background measurements of star-forming galaxies, and low redshifts line-of-sight probes, we propose a new data-motivated parameterisation of the history of the average ionisation fraction. This parameterisation describes a flexible redshift-asymmetric reionisation process in two regimes that is capable of fitting all the current constraints.Comment: 5 page

    BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

    Full text link
    Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License

    La structuration de l'Univers Ă  grande Ă©chelle. une fenĂȘtre sur ses composantes sombres

    No full text
    L'Ă©nergie sombre est l'un des grands mystĂšres de la cosmologie moderne, responsable de l'actuelle accĂ©lĂ©ration de l'expansion de notre Univers. Son Ă©tude est un des axes principaux de ma thĂšse : une des voies que j'exploite s'appuie sur la structuration de l'Univers Ă  grande Ă©chelle Ă  travers un effet observationnel appelĂ© effet Sachs-Wolfe intĂ©grĂ© (iSW). Cet effet est thĂ©oriquement dĂ©tectable dans le fond diffus cosmologique (FDC) : avant de nous parvenir cette lumiĂšre traverse un grand nombre grandes structures sous-tendues par des potentiels gravitationnels. L'accĂ©lĂ©ration de l'expansion Ă©tire et aplatit ces potentiels pendant le passage des photons du FDC, modifiant leur Ă©nergie d'une façon dĂ©pendante des caractĂ©ristiques de l'Ă©nergie sombre. L'effet iSW n'a qu'un effet tĂ©nu sur le FDC, obligeant l'utilisation de donnĂ©es externes pour le dĂ©tecter. Une approche classique consiste Ă  corrĂ©ler le FDC avec un traceur de la distribution de la matiĂšre, et donc des potentiels sous-jacents. Maintes fois tentĂ©e avec des relevĂ©s de galaxies, cette corrĂ©lation n'a pas donnĂ© Ă  l'heure actuelle de rĂ©sultat dĂ©finitif sur la dĂ©tection de l'effet iSW, la faute Ă  des relevĂ©s pas assez profonds et/ou avec une couverture trop faible. Un partie de ma thĂšse est dĂ©diĂ©e Ă  la corrĂ©lation du FDC avec un autre fond "diffus" : le fond diffus infrarouge (FDI), qui est constituĂ© de l'Ă©mission intĂ©grĂ©e des galaxies lointaines non-rĂ©solues. J'ai pu montrer qu'il reprĂ©sente un excellent traceur, exempt des dĂ©fauts des relevĂ©s actuels. Les niveaux de signifiance attendus pour la corrĂ©lation CIB-CMB excĂšdent ceux des relevĂ©s actuels, et rivalisent avec ceux prĂ©dits pour la futur gĂ©nĂ©ration de trĂšs grands relevĂ©s. Dans la suite, ma thĂšse a portĂ© sur l'empreinte individuelle sur le FDC des plus grandes structures par effet iSW. Mon travail sur le sujet a d'abord consistĂ© Ă  revisiter une Ă©tude prĂ©cĂ©dente d'empilement de vignettes de FDC Ă  la position de structures, avec mes propres protocole de mesure et tests statistiques pour vĂ©rifier la signifiance de ces rĂ©sultats, dĂ©licate Ă  Ă©valuer et sujette Ă  de possibles biais de sĂ©lection. J'ai poursuivi en appliquant cette mĂȘme mĂ©thode de dĂ©tection Ă  d'autres catalogues de structures disponibles, beaucoup plus consĂ©quents et supposĂ©ment plus raffinĂ©s dans leur algorithme de dĂ©tection. Les rĂ©sultats pour un d'eux suggĂšre la prĂ©sence d'un signal Ă  des Ă©chelles et amplitudes compatible avec la thĂ©orie, mais Ă  des niveaux modĂ©rĂ©s de signifiance. Ces rĂ©sultats empilements font s'interroger concernant le signal attendu : cela m'a amenĂ© Ă  travailler sur une prĂ©diction thĂ©orique de l'iSW engendrĂ© par des structures, par des simulations basĂ©es sur la mĂ©trique de LemaĂźtre-Tolman-Bondi. Cela m'a permis de prĂ©dire l'effet iSW thĂ©orique exact de structures existantes : l'amplitude centrale des signaux mesurĂ©s est compatible avec la thĂ©orie, mais prĂ©sente des caractĂ©ristiques non-reproductibles par ces mĂȘmes prĂ©dictions. Une extension aux catalogues Ă©tendus permettra de vĂ©rifier la signifiance de leurs signaux et leur compatibilitĂ© avec la thĂ©orie. Un dernier pan de ma thĂšse porte sur une Ă©poque de l'histoire de l'Univers appelĂ©e rĂ©ionisation : son passage d'un Ă©tat neutre Ă  ionisĂ© par l'arrivĂ©e des premiĂšres Ă©toiles et autres sources ionisantes. Cette pĂ©riode a une influence importante sur le FDC et ses propriĂ©tĂ©s statistiques, en particulier sur son spectre de puissance des fluctuations de polarisation. Dans mon cas, je me suis penchĂ© sur l'utilisation des mesures de tempĂ©ratures du milieu intergalactique, afin d'Ă©tudier la contribution possible de la dĂ©sintĂ©gration et annihilation de l'hypothĂ©tique matiĂšre sombre. A partir d'un travail thĂ©orique sur plusieurs modĂšles et leur comparaison aux observations de tempĂ©rature, j'ai pu extraire des contraintes intĂ©ressantes et inĂ©dites sur les paramĂštres cruciaux de la matiĂšre sombre et des caractĂ©ristiques cruciales de la rĂ©ionisation elle-mĂȘme.The dark energy is one of the great mysteries of modern cosmology, responsible for the current acceleration of the expansion of our Universe. Its study is a major focus of my thesis : the way I choose to do so is based on the large-scale structure of the Universe, through a probe called the integrated Sachs-Wolfe effect (iSW). This effect is theoretically detectable in the cosmic microwave background (CMB) : before reaching us this light travelled through large structures underlain by gravitational potentials. The acceleration of the expansion stretches and flattens these potentials during the crossing of photons, changing their energy, in a way that depend on the properties of the dark energy. The iSW effect only has a weak effect on the CMB requiring the use of external data to be detectable. A conventional approach is to correlate the CMB with a tracer of the distribution of matter, and therefore the underlying potentials. This has been attempted numerous times with galaxies surveys but the measured correlation has yet to give a definitive result on the detection of the iSW effect. This is mainly due to the shortcomings of current surveys that are not deep enough and/or have a too low sky coverage. A part of my thesis is devoted to the correlation of FDC with another diffuse background, namely the cosmological infrared background (CIB), which is composed of the integrated emission of the non-resolved distant galaxies. I was able to show that it is an excellent tracer, free from the shortcomings of current surveys. The levels of significance for the expected correlation CIB-CMB exceed those of current surveys, and compete with those predicted for the future generation of very large surveys. In the following, my thesis was focused on the individual imprint in the CMB of the largest structures by iSW effect. My work on the subject first involved revisiting a past study of stacking CMB patches at structures location, using my own protocol, completed and associated with a variety of statistical tests to check the significance of these results. This point proved to be particularly difficult to assess and subject to possible selection bias. I extended the use of this detection method to other available catalogues of structures, more consequent and supposedly more sophisticated in their detection algorithms. The results from one of them suggests the presence of a signal at scales and amplitude consistent with the theory, but with moderate significance. The stacking results raise questions regarding the expected signal : this led me to work on a theoretical prediction of the iSW effect produced by structures, through simulations based on the LemaĂźtre-Tolman-Bondi metric. This allowed me to predict the exact theoretical iSW effect of existing structures. The central amplitude of the measured signals is consistent with the theory, but shows features non-reproducible by my predictions. An extension to the additional catalogues will verify the significance of their signals and their compatibility with the theory. Another part of my thesis focuses on a distant time in the history of the Universe, called reionisation : the transition from a neutral universe to a fully ionised one under the action of the first stars and other ionising sources. This period has a significant influence on the CMB and its statistical properties, in particular the power spectrum of its polarisation fluctuations. In my case, I focused on the use of temperature measurements of the intergalactic medium during the reionisation in order to investigate the possible contribution of the disintegration and annihilation of the hypothetical dark matter. Starting from a theoretical work based on several models of dark matter, I computed and compared predictions to actual measures of the IGM temperature, which allowed me to extract new and interesting constraints on the critical parameters of the dark matter and crucial features of the reionisation itsel

    The impact of superstructures in the Cosmic Microwave Background

    No full text

    Cluster counts. II. Tensions, massive neutrinos, and modified gravity

    No full text
    International audienceThe Lambda cold dark matter (ΛCDM) concordance model is very successful at describing our Universe with high accuracy and only a few parameters. Despite its successes, a few tensions persist; most notably, the best-fit ΛCDM model, as derived from the Planck cosmic microwave background (CMB) data, largely overpredicts the abundance of Sunyaev–Zel’dovich (SZ) clusters when using their standard mass calibration. Whether this is the sign of an incorrect calibration or the need for new physics remains a matter of debate. In this study, we examined two simple extensions of the standard model and their ability to release the aforementioned tension: massive neutrinos and a simple modified gravity model via a non-standard growth index Îł. We used both the Planck CMB power spectra and SZ cluster counts as datasets, alone and in combination with local X-ray clusters. In the case of massive neutrinos, the cluster-mass calibration (1 − b) is constrained to 0.585+0.031−0.037 (68% limits), more than 5σ away from its standard value (1 − b)∌0.8. We found little correlation between neutrino masses and cluster calibration, corroborating previous conclusions derived from X-ray clusters; massive neutrinos do not alleviate the cluster-CMB tension. With our simple Îł model, we found a large correlation between the calibration and the growth index Îł, but contrary to local X-ray clusters, SZ clusters are able to break the degeneracy between the two parameters thanks to their extended redshift range. The calibration (1 − b) was then constrained to 0.602+0.053−0.065, leading to an interesting constraint on γ = 0.60 ± 0.13. When both massive neutrinos and modified gravity were allowed, preferred values remained centred on standard ΛCDM values, but a calibration (1 − b)∌0.8 was allowed (though only at the 2σ level) provided ∑mΜ ∌ 0.34 eV and Îłâ€„âˆŒâ€„0.8. We conclude that massive neutrinos do not relieve the cluster-CMB tension, and that a calibration close to the standard value (1 − b)∌0.8 would call for new physics in the gravitational sector.Key words: galaxies: clusters: general / large-scale structure of Universe / cosmological parameters / cosmic background radiatio

    Stoerungs- und Schadenserfassung nach dem Schema der VDEW-Stoerungsstatistik

    No full text
    SIGLEAvailable from TIB Hannover: RN 325(285) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekArbeitsgemeinschaft Industrieller Forschungsvereinigungen e.V., Koeln (Germany)DEGerman

    A Cautionary Tale: Dark Energy in Single-Field, Slow-Roll Inflationary Models

    No full text
    International audienceThe current epoch of accelerated cosmic expansion is postulated to be driven by dark energy, which in the standard model takes the form of a cosmological constant with equation of state parameter w=−1w=-1. We propose an innovative perspective over the nature of dark energy by drawing a parallel with inflation, which we assume to be driven by a single scalar field, the inflaton. The inflaton was not a cosmological constant, as indicated by the fact that inflation ended and by the Planck satellite's constraint of ns≠1n_s\neq 1 at 8σ8\sigma confidence. Therefore, it is interesting to verify whether its equation of state parameter was measurably different from −1-1. We analyze this question for a class of single-field slow-roll inflationary models, where the hierarchy of Hubble slow-roll parameters is truncated at different orders. Based on the latest Planck and BICEP2/Keck data, we obtain a 68%68\% upper bound of 1+w<0.00141+w < 0.0014 for the three-parameter model, which gives the best description to the data. This provides a cautionary tale for drawing conclusions about the nature of today's dark energy based upon the non-detection of a deviation from w=−1w=-1 with current and upcoming cosmological surveys

    Cluster counts: Calibration issue or new physics?

    No full text
    International audienceIn recent years, the amplitude of matter fluctuations inferred from low-redshift probes has been found to be generally lower than the value derived from cosmic microwave background (CMB) observations in the ΛCDM model. This tension has been exemplified by Sunyaev-Zel’dovich and X-ray cluster counts which, when using their Planck standard cluster mass calibration, yield a value of σ8, appreciably lower than estimations based on the latest Planck CMB measurements. In this work we examine whether non-minimal neutrino masses can alleviate this tension substantially. We used the cluster X-ray temperature distribution function derived from a flux-limited sample of local X-ray clusters, combined with Planck CMB measurements. These datasets were compared to ΛCDM predictions based on recent mass function, adapted to account for the effects of massive neutrinos. Treating the clusters mass calibration as a free parameter, we examined whether the data favours neutrino masses appreciably higher than the minimal 0.06 eV value. Using Markov chain Monte Carlo methods, we found no significant correlation between the mass calibration of clusters and the sum of neutrino masses, meaning that massive neutrinos do not noticeably alleviate the above-mentioned Planck CMB–clusters tension. The addition of other datasets (baryon acoustic oscillations and Ly-α) reinforces those conclusions. As an alternative possible solution to the tension, we introduced a simple, phenomenological modification of gravity by letting the growth index Îł vary as an additional free parameter. We find that the cluster mass calibration is robustly correlated with the Îł parameter, insensitively to the presence of massive neutrinos or/and additional data used. We conclude that the standard Planck mass calibration of clusters, if consolidated, would represent evidence for new physics beyond ΛCDM with massive neutrinos.Key words: galaxies: clusters: general / large-scale structure of Universe / cosmological parameters / cosmic background radiatio
    corecore