8 research outputs found

    Mean PSE shifts for the NH group.

    No full text
    <p>Red: right ear; blue: left ear. Test frequencies are listed on the abscissa.</p

    Binaural Diplacusis and Its Relationship with Hearing-Threshold Asymmetry

    No full text
    <div><p>Binaural pitch diplacusis refers to a perceptual anomaly whereby the same sound is perceived as having a different pitch depending on whether it is presented in the left or the right ear. Results in the literature suggest that this phenomenon is more prevalent, and larger, in individuals with asymmetric hearing loss than in individuals with symmetric hearing. However, because studies devoted to this effect have thus far involved small samples, the prevalence of the effect, and its relationship with interaural asymmetries in hearing thresholds, remain unclear. In this study, psychometric functions for interaural pitch comparisons were measured in 55 subjects, including 12 normal-hearing and 43 hearing-impaired participants. Statistically significant pitch differences between the left and right ears were observed in normal-hearing participants, but the effect was usually small (less than 1.5/16 octave, or about 7%). For the hearing-impaired participants, statistically significant interaural pitch differences were found in about three-quarters of the cases. Moreover, for about half of these participants, the difference exceeded 1.5/16 octaves and, in some participants, was as large as or larger than 1/4 octave. This was the case even for the lowest frequency tested, 500 Hz. The pitch differences were weakly, but significantly, correlated with the difference in hearing thresholds between the two ears, such that larger threshold asymmetries were statistically associated with larger pitch differences. For the vast majority of the hearing-impaired participants, the direction of the pitch differences was such that pitch was perceived as higher on the side with the higher (i.e., ‘worse’) hearing thresholds than on the opposite side. These findings are difficult to reconcile with purely temporal models of pitch perception, but may be accounted for by place-based or spectrotemporal models.</p></div

    Mean hearing loss as a function of frequency for the HI participants.

    No full text
    <p>Green: mean hearing loss for the ‘better’ ear; purple: mean pure-tone thresholds for the contralateral ear. Error bars show +/- 1 standard deviation (SD).</p

    Example psychometric function fitted to data from one NH participant.

    No full text
    <p>For this example, the PSE shift was approximately equal to -1.7/16 octave (approximately 7.64%).</p

    Factors Affecting Auditory Performance of Postlinguistically Deaf Adults Using Cochlear Implants:An Update with 2251 Patients

    No full text
    <p>Objective: To update a 15-year-old study of 800 postlinguistically deaf adult patients showing how duration of severe to profound hearing loss, age at cochlear implantation (CI), age at onset of severe to profound hearing loss, etiology and CI experience affected CI outcome. Study Design: Retrospective multicenter study. Methods: Data from 2251 adult patients implanted since 2003 in 15 international centers were collected and speech scores in quiet were converted to percentile ranks to remove differences between centers. Results: The negative effect of long duration of severe to profound hearing loss was less important in the new data than in 1996; the effects of age at CI and age at onset of severe to profound hearing loss were delayed until older ages; etiology had a smaller effect, and the effect of CI experience was greater with a steeper learning curve. Patients with longer durations of severe to profound hearing loss were less likely to improve with CI experience than patients with shorter duration of severe to profound hearing loss. Conclusions: The factors that were relevant in 1996 were still relevant in 2011, although their relative importance had changed. Relaxed patient selection criteria, improved clinical management of hearing loss, modifications of surgical practice, and improved devices may explain the differences. Copyright (c) 2012 S. Karger AG, Basel</p>
    corecore