69 research outputs found

    Crystallization and preliminary crystallographic studies of human kallikrein 7, a serine protease of the multigene kallikrein family

    Get PDF
    4 páginas, 6 figuras, 2 tablas -- PAGS nros. 669-672Hepatitis B core (HBc) particles have been extensively exploited as carriers for foreign immunological epitopes in the development of multicomponent vaccines and diagnostic reagents. Crystals of the T = 4 HBc particle were grown in PEG 20 000, ammonium sulfate and various types of alcohols. A temperature jump from 277 or 283 to 290 K was found to enhance crystal growth. A crystal grown using MPD as a cryoprotectant diffracted X-rays to 7.7 Å resolution and data were collected to 99.6% completeness at 8.9 Å. The crystal belongs to space group P212121, with unit-cell parameters a = 352.3, b = 465.5, c = 645.0 Å. The electron-density map reveals a protrusion that is consistent with the N-terminus extending out from the surface of the capsid. The structure presented here supports the idea that N-terminal insertions can be exploited in the development of diagnostic reagents, multicomponent vaccines and delivery vehicles into mammalian cellsWe thank Professor K. Murray for providing plasmid pR1-11E. X-ray data collection was supported by BM14UK/ESRF, Grenoble and SRS, Daresbury. WST was supported by a Die NorKen Stiftung Visiting Fellowship and KLH is the recipient of the Darwin Trust ScholarshipPeer reviewe

    Increased Activities against Biofilms of the Pathogenic Yeast Candida albicans of Optimized Pom-1 Derivatives

    Get PDF
    Antimicrobial peptides (AMPs) are an alternative group for the therapy of infectious diseases, with activity against a wide range of diverse pathogens. However, classical AMPs have significant side effects in human cells due to their unspecific pore formation in biomembranes. Nevertheless, AMPs are promising therapeutics and can be isolated from natural sources, which include sea and freshwater molluscs. The AMPs identified in these organisms show promising antimicrobial activities, as pathogens are mainly fought by innate defence mechanisms. An auspicious candidate among molluscs is the Cuban freshwater snail Pomacea poeyana, from which the peptides Pom-1 and Pom-2 have been isolated and studied. These studies revealed significant antimicrobial activities for both AMPs. Based on the activities determined, Pom-1 was used for further optimization. In order to meet the emerging requirements of improved anti-biofilm activity against naturally occurring Candida species, the six derivatives Pom-1A to F were developed and investigated. Analysis of the derivatives acting on the most abundant naturally occurring Candida yeast Candida albicans (C. albicans) revealed a strong anti-biofilm activity, especially induced by Pom-1 B, C, and D. Furthermore, a moderate decrease in the metabolic activity of planktonic yeast cells was observed

    Combination of Six Individual Derivatives of the Pom-1 Antibiofilm Peptide Doubles Their Efficacy against Invasive and Multi-Resistant Clinical Isolates of the Pathogenic Yeast Candida albicans

    Get PDF
    In previous studies, derivatives of the peptide Pom-1, which was originally extracted from the freshwater mollusk Pomacea poeyana, showed an exceptional ability to specifically inhibit biofilm formation of the laboratory strain ATCC 90028 as a model strain of the pathogenic yeast Candida albicans. In follow-up, here, we demonstrate that the derivatives Pom-1A to Pom-1F are also active against biofilms of invasive clinical C. albicans isolates, including strains resistant against fluconazole and/or amphotericin B. However, efficacy varied strongly between the isolates, as indicated by large deviations in the experiments. This lack of robustness could be efficiently bypassed by using mixtures of all peptides. These mixed peptide preparations were active against biofilm formation of all the isolates with uniform efficacies, and the total peptide concentration could be halved compared to the original MIC of the individual peptides (2.5 µg/mL). Moreover, mixing the individual peptides restored the antifungal effect of fluconazole against fluconazole-resistant isolates even at 50% of the standard therapeutic concentration. Without having elucidated the reason for these synergistic effects of the peptides yet, both the gain of efficacy and the considerable increase in efficiency by combining the peptides indicate that Pom-1 and its derivatives in suitable formulations may play an important role as new antibiofilm antimycotics in the fight against invasive clinical infections with (multi-) resistant C. albicans

    An optimized derivative of an endogenous CXCR4 antagonist prevents atopic dermatitis and airway inflammation

    Get PDF
    Aberrant CXCR4/CXCL12 signaling is involved in many pathophysiological processes such as cancer and inflammatory diseases. A natural fragment of serum albumin, named EPI-X4, has previously been identified as endogenous peptide antagonist and inverse agonist of CXCR4 and is a promising compound for the development of improved analogues for the therapy of CXCR4-associated diseases. To generate optimized EPI-X4 derivatives we here performed molecular docking analysis to identify key interaction motifs of EPI-X4/CXCR4. Subsequent rational drug design allowed to increase the anti-CXCR4 activity of EPI-X4. The EPI-X4 derivative JM#21 bound CXCR4 and suppressed CXCR4-tropic HIV-1 infection more efficiently than the clinically approved small molecule CXCR4 antagonist AMD3100. EPI-X4 JM#21 did not exert toxic effects in zebrafish embryos and suppressed allergen-induced infiltration of eosinophils and other immune cells into the airways of animals in an asthma mouse model. Moreover, topical administration of the optimized EPI-X4 derivative efficiently prevented inflammation of the skin in a mouse model of atopic dermatitis. Thus, rationally designed EPI-X4 JM#21 is a novel potent antagonist of CXCR4 and the first CXCR4 inhibitor with therapeutic efficacy in atopic dermatitis. Further clinical development of this new class of CXCR4 antagonists for the therapy of atopic dermatitis, asthma and other CXCR4-associated diseases is highly warranted

    Discovery and Characterization of an Endogenous CXCR4 Antagonist

    Get PDF
    CXCL12-CXCR4 signaling controls multiple physiological processes and its dysregulation is associated with cancers and inflammatory diseases. To discover as-yet-unknown endogenous ligands of CXCR4, we screened a blood-derived peptide library for inhibitors of CXCR4-tropic HIV-1 strains. This approach identified a 16 amino acid fragment of serum albumin as an effective and highly specific CXCR4 antagonist. The endogenous peptide, termed EPI-X4, is evolutionarily conserved and generated from the highly abundant albumin precursor by pH-regulated proteases. EPI-X4 forms an unusual lasso-like structure and antagonizes CXCL12-induced tumor cell migration, mobilizes stem cells, and suppresses inflammatory responses in mice. Furthermore, the peptide is abundant in the urine of patients with inflammatory kidney diseases and may serve as a biomarker. Our results identify EPIX4 as a key regulator of CXCR4 signaling and introduce proteolysis of an abundant precursor protein as an alternative concept for chemokine receptor regulation

    Semen-Derived Amyloid Fibrils Drastically Enhance HIV Infection

    Get PDF
    SummarySexual intercourse is the major route of HIV transmission. To identify endogenous factors that affect the efficiency of sexual viral transmission, we screened a complex peptide/protein library derived from human semen. We show that naturally occurring fragments of the abundant semen marker prostatic acidic phosphatase (PAP) form amyloid fibrils. These fibrils, termed Semen-derived Enhancer of Virus Infection (SEVI), capture HIV virions and promote their attachment to target cells, thereby enhancing the infectious virus titer by several orders of magnitude. Physiological concentrations of SEVI amplified HIV infection of T cells, macrophages, ex vivo human tonsillar tissues, and transgenic rats in vivo, as well as trans-HIV infection of T cells by dendritic or epithelial cells. Amyloidogenic PAP fragments are abundant in seminal fluid and boost semen-mediated enhancement of HIV infection. Thus, they may play an important role in sexual transmission of HIV and could represent new targets for its prevention
    corecore