822 research outputs found

    Photon interferometry and size of the hot zone in relativistic heavy ion collisions

    Full text link
    The parameters obtained from the theoretical analysis of the single photon spectra observed by the WA98 collaboration at SPS energies have been used to evaluate the two photon correlation functions. The single photon spectra and the two photon correlations at RHIC energies have also been evaluated, taking into account the effects of the possible spectral change of hadrons in a thermal bath. We find that the ratio Rside/Rout1R_{side}/R_{out} \sim 1 for SPS and Rside/Rout<1R_{side}/R_{out} <1 for RHIC energy.Comment: text changed, figures adde

    Are direct photons a clean signal of a thermalized quark gluon plasma?

    Full text link
    Direct photon production from a quark gluon plasma (QGP) in thermal equilibrium is studied directly in real time. In contrast to the usual S-matrix calculations, the real time approach is valid for a QGP that formed and reached LTE a short time after a collision and of finite lifetime (1020fm/c\sim 10-20 \mathrm{fm}/c as expected at RHIC or LHC). We point out that during such finite QGP lifetime the spectrum of emitted photons carries information on the initial state. There is an inherent ambiguity in separating the virtual from the observable photons during the transient evolution of the QGP. We propose a real time formulation to extract the photon yield which includes the initial stage of formation of the QGP parametrized by an effective time scale of formation Γ1\Gamma^{-1}. This formulation coincides with the S-matrix approach in the infinite lifetime limit. It allows to separate the virtual cloud as well as the observable photons emitted during the pre- equilibrium stage from the yield during the QGP lifetime. We find that the lowest order contribution O(αem)\mathcal{O}(\alpha_{em}) which does \emph{not} contribute to the S-matrix approach, is of the same order of or larger than the S-matrix contribution during the lifetime of the QGP for a typical formation time 1fm/c\sim 1 \mathrm{fm}/c. The yield for momenta 3Gev/c\gtrsim 3 \mathrm{Gev}/c features a power law fall-off T3Γ2/k5\sim T^3 \Gamma^2/k^{5} and is larger than that obtained with the S-matrix for momenta 4Gev/c\geq 4 \mathrm{Gev}/c. We provide a comprehensive numerical comparison between the real time and S-matrix yields and study the dynamics of the build-up of the photon cloud and the different contributions to the radiative energy loss. The reliability of the current estimates on photon emission is discussed.Comment: 31 pages, 12 eps figures, version to appear in PR

    Hadronic Total Cross-sections Through Soft Gluon Summation in Impact Parameter Space

    Get PDF
    The Bloch-Nordsieck model for the parton distribution of hadrons in impact parameter space, constructed using soft gluon summation, is investigated in detail. Its dependence upon the infrared structure of the strong coupling constant αs\alpha_s is discussed, both for finite as well as singular, but integrable, αs\alpha_s. The formalism is applied to the prediction of total proton-proton and proton-antiproton cross-sections, where screening, due to soft gluon emission from the initial valence quarks, becomes evident.Comment: 20 pages, Latex2e, input FEYNMAN,12 postscipt figures. Submitted to PR

    Dileptons from hot heavy static photons

    Full text link
    We compute the production rate of lepton pair by static photons at finite temperature at two-loop order. We treat the infrared region of the gluon phase space carefully by using a hard thermal loop gluon propagator. The result is free of infrared and collinear divergences and exhibits an enhancement which produces a result of order e2g3\sim e^2 g^3 instead of e2g4\sim e^2 g^4 as would be expected from ordinary perturbation theory.Comment: 14 pages, 2 figure

    Tunable variation of optical properties of polymer capped gold nanoparticles

    Full text link
    Optical properties of polymer capped gold nanoparticles of various sizes (diameter 3-6 nm) have been studied. We present a new scheme to extract size dependent variation of total dielectric function of gold nanoparticles from measured UV-Vis absorption data. The new scheme can also be used, in principle, for other related systems as well. We show how quantum effect, surface atomic co - ordination and polymer - nanoparticle interface morphology leads to a systematic variation in inter band part of the dielectric function of gold nanoparticles, obtained from the analysis using our new scheme. Careful analysis enables identification of the possible changes to the electronic band structure in such nanoparticles.Comment: 13 pages,7 figures, 1 tabl

    Total photoproduction cross-section at very high energy

    Get PDF
    In this paper we apply to photoproduction total cross-section a model we have proposed for purely hadronic processes and which is based on QCD mini-jets and soft gluon re-summation. We compare the predictions of our model with the HERA data as well as with other models. For cosmic rays, our model predicts substantially higher cross-sections at TeV energies than models based on factorization but lower than models based on mini-jets alone, without soft gluons. We discuss the origin of this difference.Comment: 13 pages, 9 figures. Accepted for publication in EPJC. Changes concern added references, clarifications of the Soft Gluon Resummation method used in the paper, and other changes requested by the Journal referee which do not change the results of the original versio

    Search and study of Quark Gluon Plasma at the CERN-LHC

    Full text link
    The major aim of nucleus-nucleus collisions at the LHC is to study the physics of strongly interacting matter and the quark gluon plasma (QGP), formed in extreme conditions of temperature and energy density. We give a brief overview of the experimental program and discuss the signatures and observables for a detailed study of QGP matter.Comment: 15 pages, Invited article for the volume on LHC physics to celebrate the Platinum Jubilee of the Indian National Science Academy, Edited by Amitava Datta, Biswarup Mukhopadhyaya and Amitava Raychaudhuri (Jan 2009

    Soil biochemistry and microbial activity in vineyards under conventional and organic management at Northeast Brazil.

    Get PDF
    The São Francisco Submedium Valley is located at the Brazilian semiarid region and is an important center for irrigated fruit growing. This region is responsible for 97% of the national exportation of table grapes, including seedless grapes. Based on the fact that orgThe São Francisco Submedium Valley is located at the Brazilian semiarid region and is an important center for irrigated fruit growing. This region is responsible for 97% of the national exportation of table grapes, including seedless grapes. Based on the fact that organic fertilization can improve soil quality, we compared the effects of conventional and organic soil management on microbial activity and mycorrhization of seedless grape crops. We measured glomerospores number, most probable number (MPN) of propagules, richness of arbuscular mycorrhizal fungi (AMF) species, AMF root colonization, EE-BRSP production, carbon microbial biomass (C-MB), microbial respiration, fluorescein diacetate hydrolytic activity (FDA) and metabolic coefficient (qCO2). The organic management led to an increase in all variables with the exception of EE-BRSP and qCO2. Mycorrhizal colonization increased from 4.7% in conventional crops to 15.9% in organic crops. Spore number ranged from 4.1 to 12.4 per 50 g-1 soil in both management systems. The most probable number of AMF propagules increased from 79 cm-3 soil in the conventional system to 110 cm-3 soil in the organic system. Microbial carbon, CO2 emission, and FDA activity were increased by 100 to 200% in the organic crop. Thirteen species of AMF were identified, the majority in the organic cultivation system. Acaulospora excavata, Entrophospora infrequens, Glomus sp.3 and Scutellospora sp. were found only in the organically managed crop. S. gregaria was found only in the conventional crop. Organically managed vineyards increased mycorrhization and general soil microbial activity

    Effect of Purity and Substrate on Field Emission Properties of Multi-walled Carbon Nanotubes

    Get PDF
    Multi-walled carbon nanotubes (MWNT) have been synthesized by chemical vapour decomposition (CVD) of acetylene over Rare Earth (RE) based AB2(DyNi2) alloy hydride catalyst. The as-grown carbon nanotubes were purified by acid and heat treatments and characterized using powder X-ray diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Thermo Gravimetric Analysis and Raman Spectroscopy. Fully carbon based field emitters have been fabricated by spin coating a solutions of both as-grown and purified MWNT and dichloro ethane (DCE) over carbon paper with and without graphitized layer. The use of graphitized carbon paper as substrate opens several new possibilities for carbon nanotube (CNT) field emitters, as the presence of the graphitic layer provides strong adhesion between the nanotubes and carbon paper and reduces contact resistance. The field emission characteristics have been studied using an indigenously fabricated set up and the results are discussed. CNT field emitter prepared by spin coating of the purified MWNT–DCE solution over graphitized carbon paper shows excellent emission properties with a fairly stable emission current over a period of 4 h. Analysis of the field emission characteristics based on the Fowler–Nordheim (FN) theory reveals current saturation effects at high applied fields for all the samples
    corecore