8,951 research outputs found

    Three-dimensional numerical simulation of magnetohydrodynamic-gravity waves and vortices in the solar atmosphere

    Get PDF
    With the adaptation of the FLASH code we simulate magnetohydrodynamic-gravity waves and vortices as well as their response in the magnetized three-dimensional (3D) solar atmosphere at different heights to understand the localized energy transport processes. In the solar atmosphere strongly structured by gravitational and magnetic forces, we launch a localized velocity pulse (in horizontal and vertical components) within a bottom layer of 3D solar atmosphere modelled by initial VAL-IIIC conditions, which triggers waves and vortices. The rotation direction of vortices depends on the orientation of an initial perturbation. The vertical driver generates magnetoacoustic-gravity waves which result in oscillations of the transition region, and it leads to the eddies with their symmetry axis oriented vertically. The horizontal pulse excites all magnetohydrodynamic-gravity waves and horizontally oriented eddies. These waves propagate upwards, penetrate the transition region, and enter the solar corona. In the high-beta plasma regions the magnetic field lines move with the plasma and the temporal evolution show that they swirl with eddies. We estimate the energy fluxes carried out by the waves in the magnetized solar atmosphere and conclude that such wave dynamics and vortices may be significant in transporting the energy to sufficiently balance the energy losses in the localized corona. Moreover, the structure of the transition region highly affects such energy transports, and causes the channelling of the propagating waves into the inner corona.Comment: 11 Pages, 12 Figures, Accepted for the publication in MNRA

    Effects of quarks on the formation and evolution of Z(3) walls and strings in relativistic heavy-ion collisions

    Full text link
    We investigate the effects of explicit breaking of Z(3) symmetry due to the presence of dynamical quarks on the formation and evolution of Z(3) walls and associated QGP strings within Polyakov loop model. We carry out numerical simulations of the first order quark-hadron phase transition via bubble nucleation (which may be appropriate, for example, at finite baryon chemical potential) in the context of relativistic heavy-ion collision experiments. Using appropriate shifting of the order parameter in the Polyakov loop effective potential, we calculate the bubble profiles using bounce technique, for the true vacuum as well as for the metastable Z(3) vacua, and estimate the associated nucleation probabilities. These different bubbles are then nucleated and evolved and resulting formation and dynamics of Z(3) walls and QGP strings is studied. We discuss various implications of the existence of these Z(3) interfaces and the QGP strings, especially in view of the effects of the explicit breaking of the Z(3) symmetry on the formation and dynamical evolution of these objects.Comment: 17 pages, 9 figures, PDFLate

    Generalized Second-Order Duality for a Continuous Programming Problem with Support Functions

    Get PDF
    A generalized second-order dual is formulated for a continuous programming problem in which support functions appear in both objective and constraint functions, hence it is nondifferentiable. Under second-order pseudoinvexity and second-order quasi-invexity, various duality theorems are proved for this pair of dual continuous programming problems. Special cases are deduced and a pair of dual continuous programming problems with natural boundary values is constructed and it is pointed out that the duality results for the pair can be validated analogously to those of the dual models with fixed end points. Finally, a close relationship between duality results of our problems and those of the corresponding (static) nonlinear programming problem with support functions is briefly mentioned

    Intermolecular Potentials of H2 and D2

    Get PDF

    Temporal Localization of Fine-Grained Actions in Videos by Domain Transfer from Web Images

    Full text link
    We address the problem of fine-grained action localization from temporally untrimmed web videos. We assume that only weak video-level annotations are available for training. The goal is to use these weak labels to identify temporal segments corresponding to the actions, and learn models that generalize to unconstrained web videos. We find that web images queried by action names serve as well-localized highlights for many actions, but are noisily labeled. To solve this problem, we propose a simple yet effective method that takes weak video labels and noisy image labels as input, and generates localized action frames as output. This is achieved by cross-domain transfer between video frames and web images, using pre-trained deep convolutional neural networks. We then use the localized action frames to train action recognition models with long short-term memory networks. We collect a fine-grained sports action data set FGA-240 of more than 130,000 YouTube videos. It has 240 fine-grained actions under 85 sports activities. Convincing results are shown on the FGA-240 data set, as well as the THUMOS 2014 localization data set with untrimmed training videos.Comment: Camera ready version for ACM Multimedia 201

    Hydrogen-like Atoms from Ultrarelativistic Nuclear Collisions

    Get PDF
    The number of hydrogen-like atoms produced when heavy nuclei collide is estimated for central collisions at the Relativistic Heavy Ion Collider using the sudden approximation of Baym et al. As first suggested by Schwartz, a simultaneous measurement of the hydrogen and hadron spectra will allow an inference of the electron or muon spectra at low momentum where a direct experimental measurement is not feasible.Comment: 6 pages, 4 figure

    Bremsstrahlung from an Equilibrating Quark-Gluon Plasma

    Get PDF
    The photon production rate from a chemically equilibrating quark-gluon plasma likely to be produced at RHIC (BNL) and LHC (CERN) energies is estimated taking into account bremsstrahlung. The plasma is assumed to be in local thermal equilibrium, but with a phase space distribution that deviates from the Fermi or Bose distribution by space-time dependent factors (fugacities). The photon spectrum is obtained by integrating the photon rate over the space-time history of the plasma, adopting a boost invariant cylindrically symmetric transverse expansion of the system with different nuclear profile functions. Initial conditions obtained from a self-screened parton cascade calculation and, for comparison, from the HIJING model are used. Compared to an equilibrated plasma at the same initial energy density, taken from the self-screened parton cascade, a moderate suppression of the photon yield by a factor of one to five depending on the collision energy and the photon momentum is observed. The individual contributions to the photon production, however, are completely different in the both scenarios.Comment: 14 pages, 4 figures, shortened version to be published in Phys. Rev.

    Towards accurate detection and genotyping of expressed variants from whole transcriptome sequencing data

    Get PDF
    BACKGROUND: Massively parallel transcriptome sequencing (RNA-Seq) is becoming the method of choice for studying functional effects of genetic variability and establishing causal relationships between genetic variants and disease. However, RNA-Seq poses new technical and computational challenges compared to genome sequencing. In particular, mapping transcriptome reads onto the genome is more challenging than mapping genomic reads due to splicing. Furthermore, detection and genotyping of single nucleotide variants (SNVs) requires statistical models that are robust to variability in read coverage due to unequal transcript expression levels. RESULTS: In this paper we present a strategy to more reliably map transcriptome reads by taking advantage of the availability of both the genome reference sequence and transcript databases such as CCDS. We also present a novel Bayesian model for SNV discovery and genotyping based on quality scores. CONCLUSIONS: Experimental results on RNA-Seq data generated from blood cell tissue of three Hapmap individuals show that our methods yield increased accuracy compared to several widely used methods. The open source code implementing our methods, released under the GNU General Public License, is available at http://dna.engr.uconn.edu/software/NGSTools/
    corecore