27 research outputs found

    Absorption of silicon from artesian aquifer water and its impact on bone health in postmenopausal women: a 12 week pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Decreased bone mineral density and osteoporosis in postmenopausal women represents a growing source of physical limitations and financial concerns in our aging population. While appropriate medical treatments such as bisphosphonate drugs and hormone replacement therapy exist, they are associated with serious side effects such as osteonecrosis of the jaw or increased cardiovascular risk. In addition to calcium and vitamin D supplementation, previous studies have demonstrated a beneficial effect of dietary silicon on bone health. This study evaluated the absorption of silicon from bottled artesian aquifer water and its effect on markers of bone metabolism.</p> <p>Methods</p> <p>Seventeen postmenopausal women with low bone mass, but without osteopenia or osteoporosis as determined by dual x-ray absorptiometry (DEXA) were randomized to drink one liter daily of either purified water of low-silicon content (PW) or silicon-rich artesian aquifer water (SW) (86 mg/L silica) for 12 weeks. Urinary silicon and serum markers of bone metabolism were measured at baseline and after 12 weeks and analyzed with two-sided t-tests with p < 0.05 defined as significant.</p> <p>Results</p> <p>The urinary silicon level increased significantly from 0.016 ± 0.010 mg/mg creatinine at baseline to 0.037 ± 0.014 mg/mg creatinine at week 12 in the SW group (p = 0.003), but there was no change for the PW group (0.010 ± 0.004 mg/mg creatinine at baseline vs. 0.009 ± 0.006 mg/mg creatinine at week 12, p = 0.679). The urinary silicon for the SW group was significantly higher in the silicon-rich water group compared to the purified water group (p < 0.01). NTx, a urinary marker of bone resorption did not change during the study and was not affected by the silicon water supplementation. No significant change was observed in the serum markers of bone formation compared to baseline measurements for either group.</p> <p>Conclusions</p> <p>These findings indicate that bottled water from artesian aquifers is a safe and effective way of providing easily absorbed dietary silicon to the body. Although the silicon did not affect bone turnover markers in the short-term, the mineral's potential as an alternative prevention or treatment to drug therapy for osteoporosis warrants further longer-term investigation in the future.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov Identifier: NCT01067508</p

    Moderate alcohol consumption and increased bone mineral density: potential ethanol and non-ethanol mechanisms

    No full text
    Mounting epidemiological evidence indicates an association between the moderate ingestion of alcoholic beverages and higher bone mineral density (v. abstainers). More limited findings provide some evidence for translation of this association into reduced fracture risk, but further studies are required. Here, these data are reviewed and caveats in their assimilation, comparison and interpretation as well as in the use and application of bone health indices are discussed. Whilst it is concluded that evidence is now strong for the moderate alcohol-bone health association, at least in relation to bone mineral density, mechanisms are less clear. Both ethanol and non-ethanol components have been implicated as factors that positively affect bone health in the light of moderate consumption of alcoholic beverages, and four particular areas are discussed. First, recent findings suggest that moderate ethanol consumption acutely inhibits bone resorption, in a non-parathyroid hormone- and non-calcitonin-dependent fashion, which can only partly be attributed to an energy effect. Second, critical review of the literature does not support a role for moderate ethanol consumption affecting oestrogen status and leading to a knock-on effect on bone. Third, Si is present at high levels in certain alcoholic beverages, especially beer, and may have a measurable role in promoting bone formation. Fourth, a large body of work indicates that phytochemicals (e.g. polyphenols) from alcoholic beverages could influence bone health, but human data are lacking. With further work it is hoped to be able to model epidemiological observations and provide a clear pathway between the magnitude of association and the relative contribution of these mechanisms for the major classes of alcoholic beverage
    corecore