92 research outputs found

    Perceptions of Members of the American Association of Cereal Chemists Regarding Production of Whole Grain Foods

    Get PDF
    This study assessed knowledge, attitudes, and normative and barrier beliefs of members of the American Association of Cereal Chemists about the production of whole grain foods. A total of 212 returned questionnaires were used in the analyses. Respondents had a fair knowledge of whole grain foods and positive attitudes about consumer-health and personal/company benefits. Scientific findings provided important normative influences for respondents from academia, while consumer needs and interests were influential for those in industry. Barriers included issues regarding consumer needs as well as beliefs about cost and product quality. Industry respondents may need to see stronger consumer demand before promoting production of whole grain foods.Food Consumption/Nutrition/Food Safety,

    Forecasting Freight Logistic Needs and INDOT Plans

    Get PDF
    This project focused on forecasting freight logistics needs and developing and analyzing capacity plans for INDOT to consider. The forecast timeframe ranges from the 2020 to 2045; the commodities considered are those used in the FHWA framework. We considered five SSP (Shared Socio-Economic Pathways) scenarios that are in sync with those used by the IPCC (International Protocol for Climate Change). We also use the IPCC forecasts of world GDP and FHWA forecasts to develop county-level freight forecasts by commodity. A survey of industry participants, primarily in manufacturing, suggests that Indiana industries are tied to the rest of the country and the world for supply of inputs as well as for demand markets. Finally, we focus on three different industries—the recreational vehicle (RV) industry in Elkhart County, the furniture industry in Dubois County, and the Honda plant in Decatur County—to illustrate the impact of bill of materials and growth forecasts on forecasted congestion and potential capacity mitigation. Our results suggest that proactive capacity planning can enable INDOT to anticipate and ease congestion and ensure continued economic competitiveness for Indiana industries

    Evidence for a Heterogeneous Distribution of Water in the Martian Interior

    Get PDF
    The abundance and distribution of H2O within the terrestrial planets, as well as its timing of delivery, is a topic of vital importance for understanding the chemical and physical evolution of planets and their potential for hosting habitable environments. Analysis of planetary materials from Mars, the Moon, and the eucrite parent body (i.e., asteroid 4Vesta) have confirmed the presence of H2O within their interiors. Moreover, H and N isotopic data from these planetary materials suggests H2O was delivered to the inner solar system very early from a common source, similar in composition to the carbonaceous chondrites. Despite the ubiquity of H2O in the inner Solar System, the only destination with any prospects for past or present habitable environments at this time, outside of the Earth, is Mars. Although the presence of H2O within the martian interior has been confirmed, very little is known regarding its abundance and distribution within the martian interior and how the martian water inventory has changed over time. By combining new analyses of martian apatites within a large number of martian meteorite types with previously published volatile data and recently determined mineral-melt partition coefficients for apatite, we report new insights into the abundance and distribution of volatiles in the martian crust and mantle. Using the subset of samples that did not exhibit crustal contamination, we determined that the enriched shergottite mantle source has 36-73 ppm H2O and the depleted shergottite mantle source has 14-23 ppm H2O. This result is consistent with other observed geochemical differences between enriched and depleted shergottites and supports the idea that there are at least two geochemically distinct reservoirs in the martian mantle. We also estimated the H2O content of the martian crust using the revised mantle H2O abundances and known crust-mantle distributions of incompatible lithophile elements. We determined that the bulk martian crust has approximately 1400 ppm H2O, which is likely distributed toward the martian surface. This crustal water abundance would equate to a global equivalent layer (GEL) of water at a depth of-229 m, which can account for at least some of the surface features on Mars attributed to flowing water and may be sufficient to support the past presence of a shallow sea on Mars' surface

    Amicrostructure - processing relationships in friction stir processing (FSP) of NiAl Bronze

    Get PDF
    The evolution of SZ and thermomechanically affected zone (TMAZ) microstructures during single-pass and multi-pass FSP by rectangular and spiral raster processes will be summarized. Microstructures produced by thermomechanical simulations will be compared to those produced during FSP. The distortion of microstructure constituents in thermomechanical simulations may be applied to estimation of SZ and TMAZ strain distributions in the initial FSP pass. Recrystallization in the primary α constituent is initiated at Îșiv (Fe3Al) particles prior to their dissolution during straining

    Evidence-based management of epistaxis in adults

    No full text

    Hybrid dynamic iterations for the solution of initial value problems

    No full text
    Manyscientific problems are posed as Ordinary Differential Equations (ODEs). A large subset of these are initial value problems, which are typically solved numerically. The solution starts by using a known state-space of the ODE system to determine the state at a subsequent point in time. This process is repeated several times. When the computational demand is high due to large state space, parallel computers can be used efficiently to reduce the time to solution. Conventional parallelization strategies distribute the state space of the problem amongst cores and distribute the task of computing for a single time step amongst the cores. They are not effective when the computational problems have fine granularity, for example, when the state space is relatively small and the computational effort arises largely from the long time span of the initial value problem. We propose a hybrid dynamic iterations method1 which combines conventional sequential ODE solvers with dynamic iterations to parallelize the time domain. Empirical results demonstrate a factor of two to four improvement in performance of the hybrid dynamic iterations method over a conventional ODE solver on an 8 core processor. Compared to Picard iterations (also parallelized in the time domain), the proposed method shows better convergence and speedup results when high accuracy is required.Journal ArticlePre-prin
    • 

    corecore