95 research outputs found

    Research Notes : Inheritance of hard seeds in soybeans

    Get PDF
    During the past three years we have studied the inheritance of hard seeds in soybeans. These studies have been supported in part by INTSOY and in part by the Rockefeller Foundation. They were begun with the help of Dr. H. C. Minor and Dr. E. H. Paschal III who had evaluated potential parental material for the hard-seed characteristic and who continued to help through advice, handling plant materials in Puerto Rico, and providing certain facilities

    Qtls Controlling Seed Weight and Days to Flowering in Mungbean [Vigna Radiata (L.) Wilczek], Their Conservation in Azuki Bean [V. Angularis (Ohwi) Ohwi & Ohashi] and Rice Bean [V. Umbellata (Thunb.) Ohwi & Ohashi]

    Full text link
    Mungbean (Vigna radiata (L.) Wilczek) is a socio-economically important legume crop of Asia. Varieties with large seed size and early maturity are preferred in commercial production. In this study, we identified quantitative trait loci (QTL) controlling seed weight and days to flowering in mungbean. The mapping population comprises 155 F2-derived lines from a cross between Kamphaeng Saen 1 (large-seeded and early flowering) and V4718 (small-seeded and late flowering). The F2 population was analyzed with 67 simple sequence repeat markers. The F2:3 families were evaluated for 100-seed weigh and days to flowering in two years, 2008 (one season) and 2011 (two seasons). Composite interval mapping identified six QTLs for 100-seed weight and 5 QTLs for days to flowering. Three genomic regions harbored QTLs for both seed weight and days to flowering, revealing association between the two traits. Comparison of QTLs for both traits found in this study with those reported in azuki bean (Vigna angularis (Willd.) Ohwi & Ohashi) and rice bean (Vigna umbellata (Thunb.) Ohwi & Ohashi) revealed that several QTLs are conserved among the three Vigna species

    タイにおける耐暑性アズキ近縁野生種の分布調査

    Get PDF
    To seek new gene sources for improved high temperature tolerance in azuki bean (Vigna angularis), a collaborative expedition to collect wild relatives in the genus Vigna was conducted from 15th November to 12nd December, 1999. A total of 62 samples, 14 of Vigna exilis, 1 of V. grandiflora, 3 of V. hirtella, 9 of V. minima, 3 of V. tnnervia, 31 of V. umbellata and 1 of V. unguiculata were collected. In addition to seed samples, nodule samples and herbarium specimens were also collected

    Genome sequence of Jatropha curcas L., a non-edible biodiesel plant, provides a resource to improve seed-related traits

    Get PDF
    Jatropha curcas (physic nut), a non‐edible oilseed crop, represents one of the most promising alternative energy sources due to its high seed oil content, rapid growth and adaptability to various environments. We report ~339 Mbp draft whole genome sequence of J. curcas var. Chai Nat using both the PacBio and Illumina sequencing platforms. We identified and categorized differentially expressed genes related to biosynthesis of lipid and toxic compound among four stages of seed development. Triacylglycerol (TAG), the major component of seed storage oil, is mainly synthesized by phospholipid:diacylglycerol acyltransferase in Jatropha, and continuous high expression of homologs of oleosin over seed development contributes to accumulation of high level of oil in kernels by preventing the breakdown of TAG. A physical cluster of genes for diterpenoid biosynthetic enzymes, including casbene synthases highly responsible for a toxic compound, phorbol ester, in seed cake, was syntenically highly conserved between Jatropha and castor bean. Transcriptomic analysis of female and male flowers revealed the up‐regulation of a dozen family of TFs in female flower. Additionally, we constructed a robust species tree enabling estimation of divergence times among nine Jatropha species and five commercial crops in Malpighiales order. Our results will help researchers and breeders increase energy efficiency of this important oil seed crop by improving yield and oil content, and eliminating toxic compound in seed cake for animal feed

    Genome sequence of Jatropha curcas L., a non-edible biodiesel plant, provides a resource to improve seed-related traits

    Get PDF
    Jatropha curcas (physic nut), a non‐edible oilseed crop, represents one of the most promising alternative energy sources due to its high seed oil content, rapid growth and adaptability to various environments. We report ~339 Mbp draft whole genome sequence of J. curcas var. Chai Nat using both the PacBio and Illumina sequencing platforms. We identified and categorized differentially expressed genes related to biosynthesis of lipid and toxic compound among four stages of seed development. Triacylglycerol (TAG), the major component of seed storage oil, is mainly synthesized by phospholipid:diacylglycerol acyltransferase in Jatropha, and continuous high expression of homologs of oleosin over seed development contributes to accumulation of high level of oil in kernels by preventing the breakdown of TAG. A physical cluster of genes for diterpenoid biosynthetic enzymes, including casbene synthases highly responsible for a toxic compound, phorbol ester, in seed cake, was syntenically highly conserved between Jatropha and castor bean. Transcriptomic analysis of female and male flowers revealed the up‐regulation of a dozen family of TFs in female flower. Additionally, we constructed a robust species tree enabling estimation of divergence times among nine Jatropha species and five commercial crops in Malpighiales order. Our results will help researchers and breeders increase energy efficiency of this important oil seed crop by improving yield and oil content, and eliminating toxic compound in seed cake for animal feed
    corecore