11 research outputs found

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2, an introduction and reports on twelve research projects.National Institutes of Health Grant R01 DC00117National Institutes of Health Grant R01 DC02032National Institutes of Health/National Institute of Deafness and Other Communication Disorders Grant 2 R01 DC00126National Institutes of Health Grant 2 R01 DC00270National Institutes of Health Contract N01 DC-5-2107National Institutes of Health Grant 2 R01 DC00100U.S. Navy - Office of Naval Research Grant N61339-96-K-0002U.S. Navy - Office of Naval Research Grant N61339-96-K-0003U.S. Navy - Office of Naval Research Grant N00014-97-1-0635U.S. Navy - Office of Naval Research Grant N00014-97-1-0655U.S. Navy - Office of Naval Research Subcontract 40167U.S. Navy - Office of Naval Research Grant N00014-96-1-0379U.S. Air Force - Office of Scientific Research Grant F49620-96-1-0202National Institutes of Health Grant RO1 NS33778Massachusetts General Hospital, Center for Innovative Minimally Invasive Therapy Research Fellowship Gran

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2, an introduction and reports on fourteen research projects.National Institutes of Health Grant RO1 DC00117National Institutes of Health Grant RO1 DC02032National Institutes of Health/National Institute on Deafness and Other Communication Disorders Grant R01 DC00126National Institutes of Health Grant R01 DC00270National Institutes of Health Contract N01 DC52107U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-95-K-0014U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-96-K-0003U.S. Navy - Office of Naval Research Grant N00014-96-1-0379U.S. Air Force - Office of Scientific Research Grant F49620-95-1-0176U.S. Air Force - Office of Scientific Research Grant F49620-96-1-0202U.S. Navy - Office of Naval Research Subcontract 40167U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-96-K-0002National Institutes of Health Grant R01-NS33778U.S. Navy - Office of Naval Research Grant N00014-92-J-184

    An Experiment on the Influence of Haptic Communication on the Sense of Being Together

    No full text
    This paper describes an ongoing experiment to study whether haptic communication through force feedback can facilitate a sense of togetherness between two people at different locations while interacting with the same virtual environment. This is a companion paper to Durlach and Slater (1998) which provides a conceptual framework. The experiment concerns a scenario where two or more people are at remote sites, but must co-operate to perform a joint task or play a game in a shared VE. In the current experiment, the set-up is an abstraction from a real situation, in order to simplify the interactions that occur in real life and to create a more controlled context suitable for an experimental study in the laboratory. We focus mainly on the impact of haptic display on the perceived quality of the interaction itself. The sense of presence of a person in a VE has been of increasing interest to researchers, as discussed in the companion paper. In addition, there have been several studies on the development of social relations in shared VEs, and also on task performance (Bowers, 1996; Schroeder, 1997). However, there has been little attention paid to co-presence, that is the sense that participants have of being with other people, and to our knowledge, no attention paid at all to what the addition of touch and force-feedback between people would contribute to the shared experience. In this regard, the purpose of the experiment was to assess the impact of force feedback in addition to visual displa

    Roughness perception in haptic virtual reality for sighted and blind people

    Get PDF
    Psychophysical functions for perceived roughness, relating In (magnitude estimate of roughness) to In (groove width), were obtained for blind and sighted participants in virtual reality using the PHANToM force feedback device. The stimuli were sinusoidal surfaces with groove widths between 0.675 mm and 20.700 mm. Group functions showed a similar nonlinearity to those obtained in physical reality using rigid probes (Klatzky, Lederman, Hamilton, Grindley, & Swendsen, 2003; Lederman, Klatzky, Hamilton, & Ramsay, 1999). Individual functions gave a different picture. Of 23 total participants, there were 13 with wholly descending linear psychometric functions, 7 with quadratic functions similar to the group function, and 3 with anomalous functions. Individual power law exponents showed no significant effects of visual status. All analyses gave a power law exponent close to -0.80. The implications for theories of roughness, methodologies of data analysis, and the design of haptic virtual reality interfaces are considered
    corecore