26 research outputs found

    Multi-temporal Terrestrial Lidar for Estimating Individual Tree Dimensions and Biomass Change

    Get PDF
    Accurate measures of forest structural parameters are essential to forest inventory and growth models, managing wildfires, and modeling of carbon cycle. Terrestrial laser scanning (TLS) provides accurate understory information rapidly through non-destructive methods. This study developed algorithms to extract individual tree height, diameter at breast height (DBH), and crown width in plots at Ecosystem Science and Management (ESSM) research area and Huntsville, Texas. Further, the influence of scan settings and processing choices on the accuracy of deriving tree measurements was also investigated. The study also developed models to estimate aboveground biomass (AGB) and investigate different conceptual approaches to study tree level growth in forest structural parameters and AGB using multi-temporal TLS datasets. DBH was retrieved by cylinder fitting at different height bins. Individual trees were extracted from the TLS point cloud to determine tree heights and crown widths. The R-squared value ranged from 0.91 to 0.97 when field measured DBH was validated against TLS derived DBH using different methods. An accuracy of 92% was obtained for predicting tree heights. The R-squared value was 0.84 and RMSE was 1.08 m when TLS derived crown widths were validated using field measured crown widths. Examples of underestimations of field measured forest structural parameters due to tree shadowing have also been discussed in this study. Correction factors should be applied or multiple high resolution scans should be conducted to reduce the errors in estimation of forest structural parameters. TLS geometric and statistical parameters were derived for individual trees and used as explanatory variables to estimate AGB. An extensive literature review reveals that this is the first study to model the change in AGB using different innovative and conceptual approaches with multi-temporal TLS data. Tree level AGB growth was studied over a period of three years using three different approaches. Results showed that TLS derived geometric parameters were better correlated to field measured AGB. Promising results for AGB change were obtained using the direct modeling approach; hence forest growth could be studied independent of any field measurements when biomass models are available. However, the models could be improved by incorporating more trees with a wide range of DBH and tree heights. The results from this study will benefit foresters, planners, and other remote sensing studies from airborne and spaceborne platforms, for map upscaling, data fusion, or calibration purposes

    Photocatalytic Oxidation of Anesthetic Gases

    Get PDF
    Inhaled anesthetics used in surgeries are typically volatile halogenated hydrocarbons. In a typical situation only 5% of the administered anesthetic is metabolized by the human body, while the remaining 95% is exhaled through the ventilation systems eventually into the environment as it is. The anesthetics contribute to global warming and stratospheric ozone depletion. This research focuses on using advanced oxidation processes as a treatment system for the common anesthetic gases namely Halothane, Sevoflurane and Isoflurane. The first step was to determine an appropriate reactor setup which could contain the light source and the catalyst medium with an accessible sampling port. The loss of anesthetic gas due to leaks and wall effects were measured and considered to be a baseline for further tests. In developing a treatment system, UV-photolysis, UV-ozonation, and UV-photocatalysis were tested in different batch experiments using Halothane, and UV-photocatalysis was found to be the most effectiveadvanced oxidation process among the ones tested. Since UV-photocatalysis was efficient in degrading ~ 99.9 % of the anesthetic gas in 20 min, the influence of several parameters such as the type of catalyst, the type of catalyst support surface, the catalyst loading, the incident light wavelength, the power of the incident light, catalyst surface area illuminated, inlet reactant concentration and the moisture content on the degradation efficiency of UV-photocatalysis was tested. Based on the results obtained UV-photocatalysis with the appropriate conditions was used to test the degradation of Isoflurane and Sevoflurane. The post oxidation contents of the reactor with Isoflurane and Sevoflurane were measured using Ion Chromatography for their anion concentration and a possible degradation mechanism was suggested for their photocatalytic degradation in the presence of TiO2

    FORMULATION AND EVALUATION OF MOUTH-DISSOLVING FILM OF AN H1 ANTIHISTAMINE DRUG

    Get PDF
    Objective: The objective of present work was to develop a Mouth dissolving film of Levocetirizine dihydrochloride drug by Solvent casting method using different natural polymers. The best polymer was selected on the basis of the release of the drug and disintegration time. Methods: Sodium alginate and Guar gum are used as a natural polymers. Starch is used as a disintegrant. Glycerol is used as a plasticizer. Citric acid is usedas a saliva-stimulating agent. Mannitol is used as a sweetener. Peppermint oil as a flavoring agent. Mouth-dissolving films were prepared by using the solvent casting method. Results: The compatibility study of the drug with different natural polymers was carried out. The IR spectral studies showed no interaction between drug and polymers. Obtained satisfactory results for Preformulation and post-formulation tests. Formulation F6 containing sodium alginate, F9 containing guar gum and F14 containing a combination ratio of (Sodium alginate: guar gum) showed good results throughout the study. The stability studies on the formulations F6, F9 and F14 indicates that there is no significant change in physical appearance, disintegration time and drug content release study. Conclusion: From the results, it was concluded that the Mouth dissolving films of Levocetirizine dihydrochloride containing natural polymer sodium alginate (F6) showed the least disintegration time (14.28 sec), highest dissolution rate (98.24%) than the formulation containing natural polymer guar gum and combination ratio of (Sodium alginate: guar gum)

    Estimation of tropical forest aboveground biomass in Nepal using multiple remotely sensed data and deep learning

    Get PDF
    This study assessed the prediction accuracy of the forest aboveground biomass (AGB) model using remotely sensed data sources (i.e. airborne laser scanning (ALS), RapidEye, Landsat), and the combination of ALS with RapidEye/Landsat using parametric weighted least squares (WLS) regression. We also analysed the AGB model using random forests, extremely randomized trees, and deep learning stacked autoencoder (SAE) network from nonparametric statistics to compare the performance with WLS regression. We also compared the widths of the 95% confidence intervals for estimates of the mean AGB per unit area using the model-based estimator. The study site in the Terai Arc Landscape, Nepal, comprised 14 protected areas extending from the southern part of Nepal to India and encompassed mosaics of continuous dense forest and tall grassland. The ALS data provided the largest prediction accuracy (0.30–0.35 relative root mean squared error (rRMSE)), whereas RapidEye and Landsat had smaller prediction accuracies (0.48‒0.54 and 0.47‒0.55 rRMSE, respectively) for the estimation of AGB. The combined use of ALS and RapidEye predictors in the AGB model reduced the rRMSE and narrowed the confidence interval compared with ALS alone, but the improvements were minor. The SAE prediction technique provided the largest prediction accuracy, with inputs of combined ALS and RapidEye predictors that yielded an R2 of 0.80, an rRMSE of 0.30, and a confidence interval of 176‒184 compared to other tested prediction techniques. The SAE prediction technique can become more powerful than other tested prediction techniques if properly adjusted and tuned for accurate forest AGB mapping applications. To our knowledge, this is the first study assessing the performance of the SAE in AGB modelling with a range of hyper-parameter values

    Kidney Disease Progression Does Not Decrease Intestinal Phosphorus Absorption in a Rat Model of Chronic Kidney Disease–Mineral Bone Disorder

    Get PDF
    The Cy/+ rat has been characterized as a progressive model of chronic kidney disease–mineral bone disorder (CKD‐MBD). We aimed to determine the effect of kidney disease progression on intestinal phosphorus absorption and whole‐body phosphorus balance in this model. A total of 48 Cy/+ (CKD) and 48 normal littermates (NL) rats were studied at two ages: 20 weeks and 30 weeks, to model progressive kidney function decline at approximately 50% and 20% of normal kidney function. Sodium‐dependent and sodium‐independent intestinal phosphorus absorption efficiency were measured by the in situ jejunal ligated loop method using 33P radioisotope. Our results show that CKD rats had slightly higher sodium‐dependent phosphorus absorption compared to NL rats, and absorption decreased from 20 to 30 weeks. These results are in contrast to plasma 1,25OH2D, which was lower in CKD rats. Gene expression of the major intestinal phosphorus transporter, NaPi‐2b, was not different between CKD and NL rats in the jejunum but was lower in CKD rats versus NL rats in the duodenum. Jejunal ligated loop phosphorus absorption results are consistent with percent net phosphorus absorption results obtained from metabolic balance: higher net percent phosphorus absorption values in CKD rats compared with NL, and lower values in 30‐week‐olds compared with 20‐week‐olds. Phosphorus balance was negative (below zero) in CKD rats, significantly lower in 30‐week‐old rats compared with 20‐week‐old rats, and lower in CKD rats compared with NL rats at both ages. These results demonstrate no reduction in intestinal phosphorus absorption with progression of CKD despite lower 1,25OH2D status when assessed by an in situ ligated loop test, which is in contrast to the majority of in vitro studies, and if confirmed in further studies, could challenge the physiological relevance of in vitro findings

    Non-Additive Effects of Combined NOX1/4 Inhibition and Calcimimetic Treatment on a Rat Model of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD)

    Get PDF
    Chronic kidney disease‐mineral and bone disorder (CKD‐MBD) increases cardiovascular calcification and skeletal fragility in part by increasing systemic oxidative stress and disrupting mineral homeostasis through secondary hyperparathyroidism. We hypothesized that treatments to reduce reactive oxygen species formation and reduce parathyroid hormone (PTH) levels would have additive beneficial effects to prevent cardiovascular calcification and deleterious bone architecture and mechanics before end‐stage kidney disease. To test this hypothesis, we treated a naturally progressive model of CKD‐MBD, the Cy/+ rat, beginning early in CKD with the NADPH oxidase (NOX1/4) inhibitor GKT‐137831 (GKT), the preclinical analogue of the calcimimetic etelcalcetide, KP‐2326 (KP), and their combination. The results demonstrated that CKD animals had elevated blood urea nitrogen, PTH, fibroblast growth factor 23 (FGF23), and phosphorus. Treatment with KP reduced PTH levels compared with CKD animals, whereas GKT treatment increased C‐terminal FGF23 levels without altering intact FGF23. GKT treatment alone reduced aortic calcification and NOX4 expression but did not alter the oxidative stress marker 8‐OHdG in the serum or aorta. KP treatment reduced aortic 8‐OHdG and inhibited the ability for GKT to reduce aortic calcification. Treatments did not alter heart calcification or left ventricular mass. In the skeleton, CKD animals had reduced trabecular bone volume fraction and trabecular number with increased trabecular spacing that were not improved with either treatment. The cortical bone was not altered by CKD or by treatments at this early stage of CKD. These results suggest that GKT reduces aortic calcification while KP reduces aortic oxidative stress and reduces PTH, but the combination was not additive

    Effect of Advanced Glycation End‐Products (AGE) Lowering Drug ALT‐711 on Biochemical, Vascular, and Bone Parameters in a Rat Model of CKD‐MBD

    Get PDF
    Chronic kidney disease–mineral bone disorder (CKD‐MBD) is a systemic disorder that affects blood measures of bone and mineral homeostasis, vascular calcification, and bone. We hypothesized that the accumulation of advanced glycation end‐products (AGEs) in CKD may be responsible for the vascular and bone pathologies via alteration of collagen. We treated a naturally occurring model of CKD‐MBD, the Cy/+ rat, with a normal and high dose of the AGE crosslink breaker alagebrium (ALT‐711), or with calcium in the drinking water to mimic calcium phosphate binders for 10 weeks. These animals were compared to normal (NL) untreated animals. The results showed that CKD animals, compared to normal animals, had elevated blood urea nitrogen (BUN), PTH, FGF23 and phosphorus. Treatment with ALT‐711 had no effect on kidney function or PTH, but 3 mg/kg lowered FGF23 whereas calcium lowered PTH. Vascular calcification of the aorta assessed biochemically was increased in CKD animals compared to NL, and decreased by the normal, but not high dose of ALT‐711, with parallel decreases in left ventricular hypertrophy. ALT‐711 (3 mg/kg) did not alter aorta AGE content, but reduced aorta expression of receptor for advanced glycation end products (RAGE) and NADPH oxidase 2 (NOX2), suggesting effects related to decreased oxidative stress at the cellular level. The elevated total bone AGE was decreased by 3 mg/kg ALT‐711 and both bone AGE and cortical porosity were decreased by calcium treatment, but only calcium improved bone properties. In summary, treatment of CKD‐MBD with an AGE breaker ALT‐711, decreased FGF23, reduced aorta calcification, and reduced total bone AGE without improvement of bone mechanics. These results suggest little effect of ALT‐711 on collagen, but potential cellular effects. The data also highlights the need to better measure specific types of AGE proteins at the tissue level in order to fully elucidate the impact of AGEs on CKD‐MBD. © 2019 American Society for Bone and Mineral Research

    Adverse effects of autoclaved diets on the progression of chronic kidney disease (CKD) and CKD-Mineral Bone Disorder in rats

    Get PDF
    Background: Autoclaving rodent diets is common in laboratory animals, but autoclaving increases the formation of dietary advanced glycation end-products (AGE). We studied the effect of autoclaved (AC) diet alone or in combination with a diet high in bioavailable phosphorus on biochemistries of chronic kidney disease-mineral and bone disorder (CKD-MBD), intestinal gene expression, and oxidative stress. Methods: Male CKD rats (Cy/+) and normal littermates were fed 1 of 3 diets: AC 0.7% phosphorus grain-based diet for 28 weeks (AC); AC diet for 17 weeks followed by non-autoclaved (Non-AC) 0.7% phosphorus casein diet until 28 weeks (AC + Casein); or Non-AC diet for 16 weeks followed by a Non-AC purified diet until 30 weeks (Non-AC + Casein). Results: AC diets contained ~3× higher AGEs and levels varied depending on the location within the autoclave. Rats fed the AC and AC + Casein diets had higher total AGEs and oxidative stress, irrespective of kidney function. Kidney function was more severely compromised in CKD rats fed AC or AC + Casein compared to Non-AC + Casein. There was a disease-by-diet interaction for plasma phosphorus, parathyroid hormone, and c-terminal fibroblast growth factor-23, driven by high values in the CKD rats fed the AC + Casein diet. Compared to Non-AC + Casein, AC and AC + Casein-fed groups had increased expression of receptor of AGEs and intestinal NADPH oxidase dual oxidase-2, independent of kidney function. Conclusions: Autoclaving rodent diets impacts the progression of CKD and CKD-MBD, highlighting the critical importance of standardizing diets in experiments

    Skeletal muscle metabolic responses to physical activity are muscle type specific in a rat model of chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) leads to musculoskeletal impairments that are impacted by muscle metabolism. We tested the hypothesis that 10-weeks of voluntary wheel running can improve skeletal muscle mitochondria activity and function in a rat model of CKD. Groups included (n = 12–14/group): (1) normal littermates (NL); (2) CKD, and; (3) CKD-10 weeks of voluntary wheel running (CKD-W). At 35-weeks old the following assays were performed in the soleus and extensor digitorum longus (EDL): targeted metabolomics, mitochondrial respiration, and protein expression. Amino acid-related compounds were reduced in CKD muscle and not restored by physical activity. Mitochondrial respiration in the CKD soleus was increased compared to NL, but not impacted by physical activity. The EDL respiration was not different between NL and CKD, but increased in CKD-wheel rats compared to CKD and NL groups. Our results demonstrate that the soleus may be more susceptible to CKD-induced changes of mitochondrial complex content and respiration, while in the EDL, these alterations were in response the physiological load induced by mild physical activity. Future studies should focus on therapies to improve mitochondrial function in both types of muscle to determine if such treatments can improve the ability to adapt to physical activity in CKD
    corecore