29 research outputs found

    Optical Cell for Combinatorial \u3ci\u3eIn Situ\u3c/i\u3e Raman Spectroscopic Measurements of Hydrogen Storage Materials at High Pressures and Temperatures

    Get PDF
    An optical cell is described for high-throughput backscattering Raman spectroscopic measurements of hydrogen storagematerials at pressures up to 10 MPa and temperatures up to 823 K. High throughput is obtained by employing a 60 mm diameter × 9 mm thick sapphire window, with a corresponding 50 mm diameter unobstructed optical aperture. To reproducibly seal this relatively large window to the cell body at elevated temperatures and pressures, a gold o-ring is employed. The sample holder-to-window distance is adjustable, making this cell design compatible with optical measurement systems incorporating lenses of significantly different focal lengths, e.g., microscope objectives and single element lenses. For combinatorial investigations, up to 19 individual powder samples can be loaded into the optical cell at one time. This cell design is also compatible with thin-film samples. To demonstrate the capabilities of the cell,in situ measurements of the Ca(BH4)2 and nano-LiBH4–LiNH2–MgH2hydrogen storage systems at elevated temperatures and pressures are reported

    Light Weight Complex Metal Hydrides for Reversible Hydrogen Storage

    Get PDF
    We have investigated the complex metal hydrides involving light weight elements or compounds for the reversible hydrogen storage. The complex hydrides are prepared via an inexpensive solid state mechanochemical process under reactive atmosphere at ambient temperatures. The complex metal hydride, LiBH4 with different mole concentrations of ZnCl2 were characterized for the new phase formation and hydrogen decomposition characteristics of Zn(BH4)2. Furthermore, the complex metal hydride is destabilized using the addition of nano MgH2 for the reversible hydrogen storage characteristics. The structural, microstructural, surface, and other physicochemical behaviors of these lightweight complex metal hydrides have been studied via various metrological tools such as x-ray diffraction, Fourier transform infrared spectroscopy, thermal programed desorption, and PCT hydrogen absorption methods

    Nanomaterials for Hydrogen Storage Applications: A Review

    Get PDF
    Nanomaterials have attracted great interest in recent years because of the unusual mechanical, electrical, electronic, optical, magnetic and surface properties. The high surface/volume ratio of these materials has significant implications with respect to energy storage. Both the high surface area and the opportunity for nanomaterial consolidation are key attributes of this new class of materials for hydrogen storage devices. Nanostructured systems including carbon nanotubes, nano-magnesium based hydrides, complex hydride/carbon nanocomposites, boron nitride nanotubes, TiS2/MoS2 nanotubes, alanates, polymer nanocomposites, and metal organic frameworks are considered to be potential candidates for storing large quantities of hydrogen. Recent investigations have shown that nanoscale materials may offer advantages if certain physical and chemical effects related to the nanoscale can be used efficiently. The present review focuses the application of nanostructured materials for storing atomic or molecular hydrogen. The synergistic effects of nanocrystalinity and nanocatalyst doping on the metal or complex hydrides for improving the thermodynamics and hydrogen reaction kinetics are discussed. In addition, various carbonaceous nanomaterials and novel sorbent systems (e.g. carbon nanotubes, fullerenes, nanofibers, polyaniline nanospheres and metal organic frameworks etc.) and their hydrogen storage characteristics are outlined

    Energy Storage in Earth-Abundant Dolomite Minerals

    No full text
    Dolomite, a calcium magnesium mineral (CaMg(CO3)2), is considered an undesirable accompanying mineral in the phosphoric acid production process and, as such, large quantities of this mineral are available in Florida. This study is aimed toward the characterization of the high-concentration phosphatic dolomite pebbles (handpicked dolomites) received from the Florida Industrial and Phosphate Research Institute (FIPR) and investigate their feasibility for thermochemical energy storage (TCES). The chemical composition, structural and microstructural characteristics of commercial and handpicked dolomite minerals was studied using a variety of techniques such as X-ray Fluorescence (XRF), Fourier-transform infrared spectroscopy (FTIR), and an automated mineralogy Automated SEM-EDX Mineralogy (or automated scanning electron microscopy) with energy dispersive X-rays spectrometer (SEM-EDX), which confirmed the phosphatic pebbles received contains dolomite (CaMg(CO3)2) phase in a high percentage. Particle size and the surface area were measured using XRD and N2 adsorption, the Brunauer–Emmett–Teller (BET) methods. Thermogravimetric analysis (TGA) was used to determine the activation energy for the calcination and re-carbonation reactions of the dolomite pebbles in nitrogen (N2) and carbon dioxide (CO2) atmospheres at temperatures up to 800 °C. The present results exhibit, for the first time, the potential for using abundant, high phosphatic concentration dolomite possessing long-term cycling behavior for thermochemical energy storage applications in Concentrated Solar Power (CSP) plants

    Clean Energy and Fuel (Hydrogen) Storage

    Get PDF
    Clean energy and fuel storage are often required for both stationary and automotive applications. Some of these clean energy and fuel storage technologies currently under extensive research and development include hydrogen storage, direct electric storage, mechanical energy storage, solar–thermal energy storage, electrochemical (batteries and supercapacitors), and thermochemical storage. The gravimetric and volumetric storage capacity, energy storage density, power output, operating temperature and pressure, cycle life, recyclability, and cost of clean energy or fuel storage are some of the factors that govern efficient energy and fuel storage technologies for potential deployment in energy harvesting (solar and wind farms) stations and onboard vehicular transportation. This Special Issue thus serves the need for promoting exploratory research and development on clean energy and fuel storage technologies while addressing their challenges to practical and sustainable infrastructures

    Synthesis and Characterization of Photocatalytic TiO2-ZnFe2O4 Nanoparticles

    Get PDF
    A new coprecipitation/hydrolysis synthesis route is used to create a TiO2-ZnFe2O4 nanocomposite that is directed towards extending the photoresponse of TiO2 from UV to visible wavelengths (>400 nm). The effect of TiO2's accelerated anatase-rutile phase transformation due to the presence of the coupled ZnFe2O4 narrow-bandgap semiconductor is evaluated. The transformation's dependence on pH, calcinations temperature, particle size, and ZnFe2O4 concentration has been analyzed using XRD, SEM, and UV-visible spectrometry. The requirements for retaining the highly photoactive anatase phase present in a ZnFe2O4 nanocomposite are outlined. The visible-light-activated photocatalytic activity of the TiO2-ZnFe2O4 nanocomposites has been compared to an Aldrich TiO2 reference catalyst, using a solar-simulated photoreactor for the degradation of phenol

    Investigation of Catalytic Effects and Compositional Variations in Desorption Characteristics of LiNH2-nanoMgH2

    No full text
    LiNH2 and a pre-processed nanoMgH2 with 1:1 and 2:1 molar ratios were mechano-chemically milled in a high-energy planetary ball mill under inert atmosphere, and at room temperature and atmospheric pressure. Based on the thermogravimetric analysis (TGA) experiments, 2LiNH2-nanoMgH2 demonstrated superior desorption characteristics when compared to the LiNH2-nanoMgH2. The TGA studies also revealed that doping 2LiNH2-nanoMgH2 base material with 2 wt. % nanoNi catalyst enhances the sorption kinetics at lower temperatures. Additional investigation of different catalysts showed improved reaction kinetics (weight percentage of H2 released per minute) of the order TiF3 > nanoNi > nanoTi > nanoCo > nanoFe > multiwall carbon nanotube (MWCNT), and reduction in the on-set decomposition temperatures of the order nanoCo > TiF3 > nanoTi > nanoFe > nanoNi > MWCNT for the base material 2LiNH2-nanoMgH2. Pristine and catalyst-doped 2LiNH2-nanoMgH2 samples were further probed by X-ray diffraction, Fourier transform infrared spectroscopy, transmission and scanning electron microscopies, thermal programmed desorption and pressure-composition-temperature measurements to better understand the improved performance of the catalyst-doped samples, and the results are discussed

    A Review on Nanocomposite Materials for Rechargeable Li-ion Batteries

    No full text
    Li-ion batteries are the key enabling technology in portable electronics applications, and such batteries are also getting a foothold in mobile platforms and stationary energy storage technologies recently. To accelerate the penetration of Li-ion batteries in these markets, safety, cost, cycle life, energy density and rate capability of the Li-ion batteries should be improved. The Li-ion batteries in use today take advantage of the composite materials already. For instance, cathode, anode and separator are all composite materials. However, there is still plenty of room for advancing the Li-ion batteries by utilizing nanocomposite materials. By manipulating the Li-ion battery materials at the nanoscale, it is possible to achieve unprecedented improvement in the material properties. After presenting the current status and the operating principles of the Li-ion batteries briefly, this review discusses the recent developments in nanocomposite materials for cathode, anode, binder and separator components of the Li-ion batteries

    Stop Flow Lithography Synthesis and Characterization of Structured Microparticles

    No full text
    In this study, the synthesis of nonspherical composite particles of poly(ethylene glycol) diacrylate (PEG-DA)/SiO2 and PEG-DA/Al2O3 with single or multiple vias and the corresponding inorganic particles of SiO2 and Al2O3 synthesized using the Stop Flow Lithography (SFL) method is reported. Precursor suspensions of PEG-DA, 2-hydroxy-2-methylpropiophenone, and SiO2 or Al2O3 nanoparticles were prepared. The precursor suspension flows through a microfluidic device mounted on an upright microscope and is polymerized in an automated process. A patterned photomask with transparent geometric features masks UV light to synthesize the particles. Composite particles with vias were synthesized and corresponding inorganic SiO2 and Al2O3 particles were obtained through polymer burn-off and sintering of the composites. The synthesis of porous inorganic particles of SiO2 and Al2O3 with vias and overall dimensions in the range of ~35–90 µm was achieved. BET specific surface area measurements for single via inorganic particles were 56–69 m2/g for SiO2 particles and 73–81 m2/g for Al2O3 particles. Surface areas as high as 114 m2/g were measured for multivia cubic SiO2 particles. The findings suggest that, with optimization, the particles should have applications in areas where high surface area is important such as catalysis and sieving
    corecore