18 research outputs found

    Programmed Allee Effect in Bacteria Causes a Tradeoff Between Population Spread and Survival

    Get PDF
    Dispersal is necessary for spread into new habitats, but it has also been shown to inhibit spread. Theoretical studies have suggested that the presence of a strong Allee effect may account for these counterintuitive observations. Experimental demonstration of this notion is lacking due to the difficulty in quantitative analysis of such phenomena in a natural setting. We engineered Escherichia coli to exhibit a strong Allee effect and examined how the Allee effect would affect the spread of the engineered bacteria. We showed that the Allee effect led to a biphasic dependence of bacterial spread on the dispersal rate: spread is promoted for intermediate dispersal rates but inhibited at low or high dispersal rates. The shape of this dependence is contingent upon the initial density of the source population. Moreover, the Allee effect led to a tradeoff between effectiveness of population spread and survival: increasing the number of target patches during dispersal allows more effective spread, but it simultaneously increases the risk of failing to invade or of going extinct. We also observed that total population growth is transiently maximized at an intermediate number of target patches. Finally, we demonstrate that fluctuations in cell growth may contribute to the paradoxical relationship between dispersal and spread. Our results provide direct experimental evidence that the Allee effect can explain the apparently paradoxical effects of dispersal on spread and have implications for guiding the spread of cooperative organisms

    Generic Metric to Quantify Quorum Sensing Activation Dynamics

    No full text
    Quorum sensing (QS) enables bacteria to sense and respond to changes in their population density. It plays a critical role in controlling different biological functions, including bioluminescence and bacterial virulence. It has also been widely adapted to program robust dynamics in one or multiple cellular populations. While QS systems across bacteria all appear to function similarlyas density-dependent control systemsthere is tremendous diversity among these systems in terms of signaling components and network architectures. This diversity hampers efforts to quantify the general control properties of QS. For a specific QS module, it remains unclear how to most effectively characterize its regulatory properties in a manner that allows quantitative predictions of the activation dynamics of the target gene. Using simple kinetic models, here we show that the dominant temporal dynamics of QS-controlled target activation can be captured by a generic metric, ‘sensing potential’, defined at a single time point. We validate these predictions using synthetic QS circuits in Escherichia coli. Our work provides a computational framework and experimental methodology to characterize diverse natural QS systems and provides a concise yet quantitative criterion for selecting or optimizing a QS system for synthetic biology applications

    Linear Population Allocation by Bistable Switches in Response to Transient Stimulation

    No full text
    <div><p>Many cellular decision processes, including proliferation, differentiation, and phenotypic switching, are controlled by bistable signaling networks. In response to transient or intermediate input signals, these networks allocate a population fraction to each of two distinct states (e.g. OFF and ON). While extensive studies have been carried out to analyze various bistable networks, they are primarily focused on responses of bistable networks to sustained input signals. In this work, we investigate the response characteristics of bistable networks to transient signals, using both theoretical analysis and numerical simulation. We find that bistable systems exhibit a common property: for input signals with short durations, the fraction of switching cells increases linearly with the signal duration, allowing the population to integrate transient signals to tune its response. We propose that this allocation algorithm can be an optimal response strategy for certain cellular decisions in which excessive switching results in lower population fitness.</p></div

    Antibiotics as a selective driver for conjugation dynamics

    No full text
    It is generally assumed that antibiotics can promote horizontal gene transfer. However, because of a variety of confounding factors that complicate the interpretation of previous studies, the mechanisms by which antibiotics modulate horizontal gene transfer remain poorly understood. In particular, it is unclear whether antibiotics directly regulate the efficiency of horizontal gene transfer, serve as a selection force to modulate population dynamics after such gene transfer has occurred, or both. Here, we address this question by quantifying conjugation dynamics in the presence and absence of antibiotic-mediated selection. Surprisingly, we find that sublethal concentrations of antibiotics from the most widely used classes do not significantly increase the conjugation efficiency. Instead, our modelling and experimental results demonstrate that conjugation dynamics are dictated by antibiotic-mediated selection, which can both promote and suppress conjugation dynamics. Our findings suggest that the contribution of antibiotics to the promotion of horizontal gene transfer may have been overestimated. These findings have implications for designing effective antibiotic treatment protocols and for assessing the risks of antibiotic use

    Response of a positive-feedback model to pulse inputs.

    No full text
    <p>(A) Triggering a bistable positive-feedback model with a pulse. (B) Simulation (open circles) vs. theoretical prediction (solid lines) of activation probability as a function of pulse duration. The black arrow indicates increasing stimulus intensity. The activation probability increases linearly with the duration, when the latter is small. Inset shows intermediate signal transformation function. (C) The transition rate dictates the linear dependence, and increases with increasing stimulus intensity. Open circles and lines indicate theoretical and numerical predictions, respectively. (D) The pulse strength can be monotonically scaled upstream of the bistable decision module without affecting the characteristic activation property. Here, we use a Hill function with coefficient <i>n</i> = 2 as the transformation function (shown in inset).</p
    corecore